Кафедра Химических дисциплин, биологии и биохимии

46/11

Лекционный комплекс

ЛЕКЦИОННЫЙ КОМПЛЕКС

Дисциплина: Органическая химия

Код дисциплины: ОН 2202

ОП: 6 В10106 «Фармация»

Объем учебных часов/кредитов 180/6

Курс 2 Семестр изучения: 4

Обьем лекции: 15 лекций

Лекционный комплекс разработан в соответствии с рабочей учебной программой дисциплины силлабусом «Органическая химия» и обсужден на заседании кафедры

Протокол № <u>11.1</u> от «<u>2.6</u> » <u>06</u> 2025 г.

Зав. кафедрой, к.х.н., и.о. проф. _____ Қ.Н.Дәуренбеков

Лекционный комплекс

Лекция №1

- 1.TEMA: Предмет органической химии. Роль органической химии в системе фармацевтического образования. Классификация и номенклатура органических соединений.
- **2.Цель:** Сформировать знания номенклатуры и классификации органических соединений как важнейших свойств, определяющих большинство физико-химических и биологических свойств органических соединений.

План

- 1. Введение в органическую химию.
- 2. Классификация, номенклатура,

3. Тезисы лекций

В настоящее время органическую химию определяют как химию углерода и его соединений. Это определение было дано еще А.М.Бутлеровым и отражало то обстоятельство, что основным элементом, входящим в состав органических соединений, является углерод.

Более точное определение предложил К. Шорлеммер: <u>органическая химия</u> - это химия углеводородов и их производных, причем в состав производных могут входить почти все элементы периодической системы. Именно это определение положено в основу современной классификации и номенклатуры органических веществ.

Современная органическая химия — одна из самых обширных областей естествознания. Выделение ее в самостоятельный раздел химической науки вызвано двумя причинами. Первая из них заключается в особой химической природе углеродного атома и его связей:

атом углерода — четырехвалентен, что позволяет углеродным цепям разветвляться в четырех направлениях;

атомы углерода, в отличие от атомов многих элементов, могут связываться в разнообразные цепи и циклы с практически неограниченным числом углеродных атомов; углеродный атом способен образовывать кратные связи. Вторая причина выделения органической химии в самостоятельную дисциплину заключается в исключительной важности органической химии для человека и общества в целом.

- 1. Атомы, входящие в состав молекулы органического вещества, не находятся в беспорядочном состоянии, а соединены в определенном порядке. Последовательность межатомных связей в молекуле называется химическим строением.
- 2. Свойства органических, соединений определяются не только природой и количеством атомов, входящих в состав молекул, но и порядком их соединений, то есть химическим строением. Изучая свойства, устанавливают химическое строение.

Лекционный комплекс

3. Химические свойства атомов и атомных группировок не являются постоянными, а зависят от других атомов (атомных групп) находящихся в молекуле.

Классификация органических соединений

Важнейшими классификационными признаками органических соединений являются строение углеродной цепи и природа функциональной группы.

Органические соединения

Ашиклические

Циклические

Карбоциклические

Гетероциклические

Алициклические

Ароматические

Классификация по природе функциональной группы

Функциональная группа — структурный фрагмент молекулы, определяющий ее химические свойства. Например, свойства карбоновых кислот определяются главным образом присутствием карбоксильной группы — СООН, спиртов — наличием гидроксила — ОН и т.д.. По природе функциональной группы различают разнообразные классы органических соединений.

4.Иллюстративный материал: приведен в виде презентации с использованием мультимедиа, а также используются во время лекции таблицы.

5. Литература:

Основная:

- 1. Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. - Шымкент : Әлем, 2016. - 500 бет. с.
- 2.Дәуренбеков, Қ. Н. Органикалық химия. Т.2: оқулық / Қ. Н. Дәуренбеков. Шымкент: Әлем, 2016. 432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4.Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет, 2024ж.
- 5.Зурабян, С. Э. Органическая химия : учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин ; под ред. Н. А. Тюкавкиной. М. : ГЭОТАР Медиа, 2013. 384 с. : ил
- 6.Зурабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p.
- 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty : "Evero" 2015. 180 p.
- 9. Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10.Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11.Органикалық химия. Т.2 : оқулық / Қ.Н. Дәуренбеков. Алматы : New book, 2022. 388 бет.
- 12.Органикалық химия. Т.3: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 284 бет.

Дополнительная:

1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б. 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторнопрактических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

Лекционный комплекс

2Республиканская межвузовская электронная библиотека (РМЭБ) – http://rmebrk.kz/

3Цифровая библиотека «Aknurpress» - https://www.aknurpress.kz/

4Электронная библиотека «Эпиграф» - http://www.elib.kz/

5Эпиграф - портал мультимедийных учебников https://mbook.kz/ru/index/

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6. Контрольные вопросы:

- 1. Классификация органических соединений. Функциональная группа.
- 2. Заместители. Родоначальная структура. Характеристическая группа
- 3. Гомологический ряд и гомологическая разница
- 4.Органический радикал. Номенклатура. Виды номенклатуры: заместительная, рациональная.

Лекция №2

- **1. TEMA:** Химическая связь и взаимное влияние атомов в органических соединениях
- 2.Цель: Сформировать знания о теории гибридизации, типах и свойствах химических связей и взаимном влиянии атомов в органических молекулах.

План.

- 1. Химическая связь и типы химической связи
- 2. Взаимное влияние атомов в органических соединениях

3. Тезисы лекций

Химическая связь. Типы химической связи в органических молекула

Атомы объединяются в молекулу вследствие возникновения между ними химической связи. При возникновении химической связи выделяется энергия и система переходит в состояние с минимальной энергией

$$A + B \rightarrow AB$$

Связь, образованная между ионами за счет электростатического притяжения, называется *цонной*.

Органические ионы образуются, главным образом, в результате гетеролиза связи по схеме:

$$(C_6H_5)_3C-Br$$
 $(C_6H_5)_3C+Br-$

карбкатион
$$(C_6H_5)_3C$$
-Н $(C_6H_5)_3C$ - + H + карбанион

Карбкатион характеризуется наличием одной вакантной р AO, а карбанион — наличием несвязанной пары электронов на р-AO углерода. Ионные связи не характерны для органических соединений и содержаться, например, в солях органических кислот

(карбоновых, сульфокислот):

Ковалентная связь

Связь, которая образуется за счет обобществления пары электронов называется ковалентной. Например: A• + B• A - B

Донорно - акцепторная связь

В случае ковалентной связи каждый атом представляет для ее образования по одному электрону. В результате возникает пара электронов с противоположной ориентацией спинов, которые движутся в поле обоих ядер. Однако, химическая связь может возникнуть и другим путем, когда один атом представляет неподеленную пару электронов, а другой — свою свободную орбиталь Такая связь называется донорно — акцепторной

Водородная связь — разновидность донорно — акцепторной связи. Атом Н, связан с сильно электроотрицательным атомом (N, O, F), поэтому электроннодефицитен и может взаимодействовать с неподеленной парой электронов другого атома.

<u>Сопряжение</u> – энергетический выгодный процесс, так как при делокализации электронов

 π — связей происходит выделение энергии. Сопряженные системы всегда содержат меньше энергии.

Взаимное влияние атомов в органических молекулах

Индуктивный эффект. Обозначается "J".

Может быть +J; -J.

+Ј - обладают алкильные группы.

-J-обладают атомы, электроотрицательность которых больше атома углерода.

Лекционный комплекс

Индуктивный эффект передается по углеродной цепи и затухает ее удлинением, самое большое влияние наблюдается в несколько меньше в β- положении и так далее.

" δ +CH3 ' δ +CH2 δ +CH2 δ -CI (-J)

2. Мезомерный эффект (эффект сопряжения). Обозначается «М». Также может иметь значение +М и -М.

Соединения с чередующимися простыми и двойными связями сопряженные. Бывают с открытой цепью атомов и с замкнутой цепью.

C=C-C=C

π, π-сопряжение

4.Иллюстративный материал: приведен в виде презентации мультимедиа, а также используются во время лекции использованием таблицы.

5.Литература:

Основная:

- 1. Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016. 500 бет. с.
- 2. Дәуренбеков, Қ. Н. Органикалық химия. Т.2 : оқулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. 432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4.Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет,2024ж.
- 5.Зурабян, С. Э. Органическая химия: учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин; под ред. Н. А. Тюкавкиной. - М.: ГЭОТАР - Медиа, 2013. - 384 с.: ил
- 6.Зурабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva, Almaty: [s. n.], 2016. 313 p.
- 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty: "Evero" 2015. - 180 p.
- 9.Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10.Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11.Органикалық химия. Т.2: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 388 бет.
- 12.Органикалық химия. Т.3: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 284 бет.

Дополнительная:

- 1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б.
- 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторнопрактических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

- 2Республиканская межвузовская электронная библиотека (РМЭБ) http://rmebrk.kz/
- ЗЦифровая библиотека «Aknurpress» https://www.aknurpress.kz/
- 4Электронная библиотека «Эпиграф» http://www.elib.kz/
- 5Эпиграф портал мультимедийных учебников https://mbook.kz/ru/index/

69EC IPR SMART https://www.iprbookshop.ru/auth

п------

Лекционный комплекс

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO 9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6.Контрольные вопросы:

- 1. Дайте определение понятия «сопряжение». Назовите вид сопряжения в молекулах анилина, фенола, бутадиена -1,3, изопрена $CH_2=C(CH_3)$ — $CH=CH_2$.
- 2. Энергия сопряжения (делокализации). Сравните энергию систем с открытой и замкнутой цепью сопряжения на примере гексатриена-1,3,5 и бензола.
- 3. Дайте определение понятия «индуктивный эффект». Изобразите графически действие индуктивного эффекта заместителей в молекулах хлороформа CHCL₃.

Лекция №3

1.ТЕМА: Пространственное строение органических молекул

2.Цель: Сформировать знания основных положении стереохимии органических соединений как основу для прогнозирования стереохимического результата органических реакций и понимания механизма биологического действия.

План.

- 1. Структурные изомеры. Стереоизомеры.
- 2. Конфигурация. Конформация.
- 3. Энантиомерия. Хиральные и ахиральные молекулы.
- 4. Стереохимия циклов.

3.Тезисы лекций

ПРОСТРАНСТВЕННОЕ СТРОЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Стереохимия изучает пространственное строение органических соединений во взаимосвязи с их физическими и химическими свойствами. Пространственное строение органических молекул оказывает влияние на проявляемую органическими веществами биологическую активность. Стереохимические концепции обогащают биохимию, фармакологию, фармацевтическую химию и создают основу молекулярного уровня их развития.

<u>Изомеры.</u> Различают структурные изомеры и стереоизомеры.

<u>Структурные изомеры</u> имеют одинаковый химический состав, но различный порядок соединения атомов внутри молекулы.

Стереоизомеры имеют различное пространственное расположение отдельных фрагментов в соответствующих

«Оңтүстік Қазақстан медицина академиясы» АҚ

SOUTH KAZAKHSTAN MEDICAL

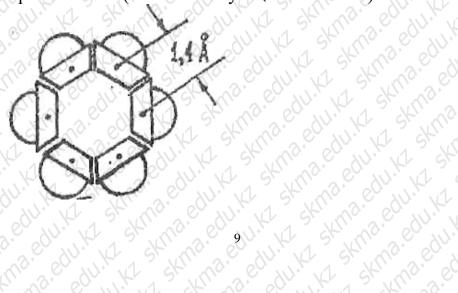
ACADEMY

АО «Южно-Казахстанская медицинская академия»

Кафедра химических дисциплин, биологии и биохимии

SKMA

Лекционный комплекс


молекулах при одинаковом составе и порядке соединения их строение органических Пространственное соединений связано со стереохимическими особенностями атома углерода, которые зависят от валентного состояния (типа гибридизации).

Конфигурация молекулы определенной структуры - это расположение атомов в пространстве без учета различий, | возникающих после вращения вокруг одной или нескольких одинарных связей. Каждой из возможных конфигураций молекулы отвечает определенный данной пространственного расположения ее атомов. Молекулы, различающиеся одной лишь конфигурацией, называются конфигурационными изомерами.

Виды молекулярных моделей. Применение молекулярных моделей обусловлено тем, что они наиболее полно отражают пространственную структуру молекул. В настоящее время созданы много типов молекулярных моделей. Мы остановимся на шаростержневых (модели Кекуле) и полусферических (модели Стюарта-Бриглеба)

Шаростержневые модели отражают длину и направление связей и пренебрегают объемом атомов. Атомы изображаются в виде шаров соединяются стержнями. Преимущество этих моделей в их наглядности. Они измерить валентные позволяют углы. Их недостаток в том, что при их использовании торсионные неправильное представление о значительной удаленности молекуле атомов друга. Поэтому они не позволяют интерпретировать стерические препятствия (эффективные объемы).

Второй тип моделей дает увеличенное изображение всего пространства, занимаемого атомом вместе с его электронным облаком, а не только изображение ядра или идеального центра атома. Поэтому создается правильное представление о заполнении внутримолекулярного пространства. Атом изображается шаром, часть которого срезена, исходя из ковалентного радиуса. Тогда при соединении атомов получается правильное расстояние между центрами атомов (в соответствующем масштабе).

Лекционный комплекс

Бензол

г) Проекционные формулы Фишера

Для изображения стереоизомеров на бумаге используют также проекционные формулы Фишера. Перед проецированием тетраэдр располагают определенным образом в пространстве, а именно горизонтальным ребром поворачивают к наблюдателю. На горизонтальном ребре, как правило, располагают неуглеродные заместители, например Н и ОН, наверху группу с наименьшим номером, ассиметрический атом углерода в плоскости бумаги (без указания символа).

Ассиметрическим называют такой атом углерода, который связан с четырьмя различными заместителями, Его называют ассиметрический центр или центр хиральности.

Энантиомерия. Молекулы с одним центром хиральности.

<u>Энантиомерия</u> — это стереоизомерия, когда конфигурации двух молекул относятся между собой как предмет и его несовместимое с ним зеркальное изображение. Молекулы с одним центром хиральности существуют только и виде пар энантиомеров. В общем случае число стереоизомеров определяется по формуле 2n, где n-число асимметрических атомов. Для энантио-меров n=1 и число энантиомеров соответственно равно двум.

В обычных условиях энантиомеры проявляют одинаковые физические и химические свойства. Отличить энантиомеры можно по оптической активности. Энантиомеры способны вращать плоскость поляризации поляризованного света, т.е. обладают оптической активностью (отсюда их исторически сложившееся название — оптические изомеры).

Энантиомеры имеют одинаковое значение величины угла вращения, но противоположные по направлению (лево () и право (+) вращающие энантиомеры), поэтому их еще называют оптическими антиподами.

Глицериновый альдегид существует в виде пары энантиомеров:

$$H$$
 О зеркало H О H

По предложению Фишера и Розанова буквами D и L были обозначены конфигурации (+) и (-) глицериновых альдегидов соответственно. Проекционные формулы Фишера и их молекулы изображаются следующим образом:

ОЙТÚSTIK-QAZAQSTAN MEDISINA AKADEMIASY «Оңтүстік Қазақстан медицина академиясы» АҚ Кафедра химических дисциплин, биологии и биохимии ОЙТÚSTIK-QAZAQSTAN MEDICAL ACADEMY AO «Южно-Казахстанская медицинская академия» Кафедра химических дисциплин, биологии и биохимии 46/11

Лекционный комплекс

При установлении структурной формулы соединения часто приходится проводить ряд химических реакций. В случае диастереомеров и энантиомеров необходимо, кроме того, определить и их пространственные формулы. При установлении пространственного строения (и пространственных формул) соединений используют понятия относительная и абсолютная конфигурации.

альдегид

<u>Относительная конфигурация</u> это конфигурация, которую сравнивают с конфигурационным стандартом - глицериновым альдегидом.

Абсолютная конфигурация. Под этим термином понимают пространственное расположение атомов в молекуле, существующее в природе. Она наиболее верно изображается молекулярными моделями. При установлении абсолютной конфигурации сравнения с какой - либо другой конфигурацией не проводится.

Рацематы. Способы разделения рацематов

альдегид

Продукт, представляющий собой смесь равных количеств энантиомеров, называют рацематом, независимо от того, является ли он кристаллическим, жидким или газообразным.

Диастереомерия. σ - и π - диастереомеры.

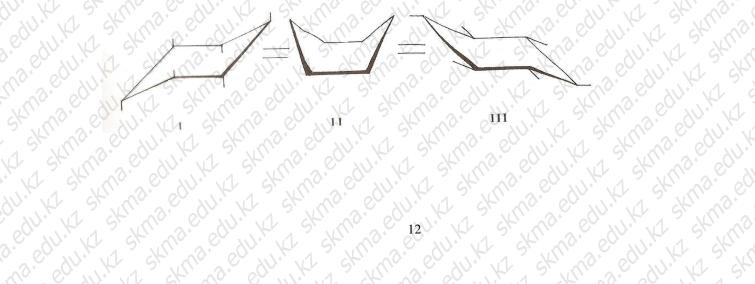
Диастереомерия — существование пространственных изомеров не составляющих пары оптических антиподов. У диастереомеров одинаковое расположение в пространстве у одних центров хиральности и разное у других. К диастереомерам относятся также цис-, транс- изомеры. Диастереомеры имеют разные физические и химические свойства, поэтому их легко можно разделить например, кристаллизацией или адсорбцией.

Понятие энантиомерии и диастереомерии являются взаимоисключающими. <u>Диастереомерам</u>и называются два стереоизомера, не являющиеся энантиомерами. Так как энантиомеры всегда зеркально идентичны, то два диастереомера не могут быть превращены друг в друга с помощью какихлибо операций симметрии. Перевод одного из диастереомеров в другой называется эпимеризацией. Диастерсомеры разделяют на о- и л-диастереомеры.

Лекционный комплекс

о- диастереомеры. В них все заместители связаны с центрами хиральности Эпимеризация происходит благодаря колебанию промежуточному разрыву σ - связей

 π - диастереомеры. В них имеется π -связь. Эпимеризация протекает с разрывом π -связи. Примером π - диастересмеров являются цис- и трансизомеры.


Вследствии внутреннего вращения вокруг одинарной Конформации. углерод-углеродной σ-связи атомы в молекуле определенной конфигурации иметь бесчисленное множество различных пространственных положений, которые называют конформации. противоположность первоначальным представления такое вращение вокруг σ-связи не совсем свободно и имеет) определенные ограничения благодаря наличию барьеров потенциальной энергии (барьеры вращения).

зависимости от угла поворота молекула принимает различные геометрические формы. За минимальный отсчет принят угол 60°. Факторами затрудняющими свободное вращение, являются:

- А) торсионное напряжение;
- Б) Ваңдер-Ваальсово напряжение;
- В) напряжение связей вследствие их растяжения или сжатия;
- Г) угловое или байеровское напряжение вследствие деформации углов между связями (характерно для алициклических соединений);
 - Д) дипольное взаимодействие или водородные связи;

Конформации находятся в динамическом (конформационное равновесие) и превращаются друг в друга, проходя через нестабильные конформации.

В молекуле циклогексана могут быть сохранены обычные валентные углы при условии его существования в неплоских конформациях "кресла" или "ванны". Конформации "кресла" на 20,9 кДж/моль менее напряжена, поэтому существует преимущественно в виде конформеров I и III, причем кольцо претерпевает непрерывную инверсию с промежуточным возникновением конформера II

4.Иллюстративный материал: приведен в виде презентации с использованием мультимедиа, а также используются во время лекции таблицы.

5. Литература:

Основная:

- 1.Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016. 500 бет. с.
- 2.Дәуренбеков, Қ. Н. Органикалық химия. Т.2 : оқулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. 432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.

Лекционный комплекс

- 4. Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет, 2024ж.
- 5.Зурабян, С. Э. Органическая химия: учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин; под ред. Н. А. Тюкавкиной. М.: ГЭОТАР Медиа, 2013. 384 с.: ил
- 6.Зурабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p. 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty: "Evero"
- 8.1 ukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty : "Evero" 2015. 180 p.
- 9. Органикалық химия : оқулық / Ә. Ф. Сейітжанов. - Алматы : ЭСПИ, 2023. - 416 б.
- 10.Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11.Органикалық химия. Т.2: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 388 бет.
- 12. Органикалық химия. Т.3 : оқулық / Қ.Н. Дәуренбеков. Алматы : New book, 2022. - 284 бет.

Дополнительная:

- 1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б.
- 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторно-практических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

- 2Республиканская межвузовская электронная библиотека (РМЭБ) http://rmebrk.kz/
- ЗЦифровая библиотека «Aknurpress» https://www.aknurpress.kz/
- 4Электронная библиотека «Эпиграф» http://www.elib.kz/
- 5Эпиграф портал мультимедийных учебников https://mbook.kz/ru/index/

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6.Контрольные вопросы:

- 1. Дайте определение конфигурации и конформации.
- **2.** Назовите виды формул используются для изображения конфигурации и конформации
- **3.** Назовите виды взаимодействий влияющие на устойчивость конформации
- **4.** Изобразите строение заторможенную, скошенную и заслоненную конформации, возникающие при вращении вокруг σ-связи C-2- C-3 в молекулах н-бутана, бутантиола-1, бутановой кислоты, коламина, бутаналя. Назовите энергетический выгодную конформацию.

Лекция №4

1.ТЕМА: Кислотно-основные свойства органических соединений.

- **2.Цель:** Сформировать знания кислотно—основных свойств органических **План**
- 1. Кислотные свойства органических соединений (кислоты Бренстеда и Льюиса).
- 2. Основные свойства органических соединений (основания Бренстеда и Льюиса).
 - 3. Концепция жестких и мягких кислот и оснований (ЖМКО).

3. Тезисы лекций

Кислотные и основные свойства органических соединений (определение по Бренстеду и Льюису)

По Бренстеду – кислоты – это соединения, способные к отдаче протона, т.е. кислоты Бренстеда – это доноры протонов.

Основания — это соединения, способные принимать протон, т.е. основания Бренстеда — это акцепторы протонов

$$AH + B = A + HB +$$

к-та основ. основ. к-та

Кислота АН и основание А-, также как НВ+ и В, являются сопряженными кислотно – основными парами

<u>По Льюису кислотами являются соединения, способные принимать пару электронов, а основаниями – соединения, предоставляющие электронную пару.</u>

Как видно из вышеприведенных опредедений, кислотность и основность есть относительные свойства, которые проявляются только в присутствии компонентов кислотно-основного взаимодействия: соединения, потенциально-способное быть кислотой, становится таковой только в присутствии основания, и наоборот.

Кислотность и основность по Бренстеду, является частным случаем более широкого представления о кислотах и основаниях, данного Льюисом. Более общая формулировка Льюиса дала возможность просматривать большое число органических реакций, в которых участвуют кислоты. Льюиса - электрофильные реагенты, или основания Льюиса - нуклеофильные реагенты, с единой позиции кислотно-основных взаимодействий.

Типы органических кислот (СН-, ОН-, SH-, NH- кислоты)

В кислотах Бренстеда атом, с которым связан протон, называют кислотным центром.

В зависимости от природы кислотного центра Бренстедовские кислоты делятся на 4 типа:

Качественно кислотные свойства соединений сравнивают путем сопоставления относительной стабильности соответствующих им сопряженных оснований (анионов).

<u>Чем стабильнее анион, тем сильнее кислота</u>, из которой он образовался. В свою очередь стабильность аниона определяется <u>степенью</u> делокализации отрицательного заряда.

В растворе стабильность аниона обусловлена двумя факторами:

- 1. Взаимным влиянием атомов (электроотрицательность и поляризуемость атомов в кислотном центре, эффекты заместителей).
 - 2. Влиянием растворителя (эффект сольватации).

Для кислот Бренстеда с одинаковыми радикалами характерно уменьшение кислотности в следующем порядке:

электроотрицательность

S по поляризуемости выше, чем 0, т.к. S>0

Типы органических оснований (оксониевые, аммониевые, сульфониевые, π-основания)

Основания Бренстеда — акцепторы протонов, поэтому для образования ковалентной связи с протоном в его молекуле должны присутствовать или электроны π -связи, или свободная неподеленная пара электронов (п - электронов) гетероатомов (O,N,S,P, галогены и др.)

Основания Бренстеда делятся на две группы: π -основания, n-основания (ониевые).

В <u> π -основаниях</u>, к которым относятся алкены, алкадиены, арены, амины <u>центром основности</u>, т.е. <u>местом присоединения протонов, являются электроны π —связи.</u> Это очень слабые основания, т.к. протонируемые электронные пары не свободны. Частичное перекрывание свободной s-орбитали протона со связывающей n-MO кратной связи или сопряженной системы приводит к образованию короткоживущей частицы, называемой π -комплексом:

Для π -комплексов характерно отсутствие преимущественной связи между протоном и одним из атомов углерода кратной связи. В ряде случаев они могут превращаться в σ - комплексы.

Ониевые основания (**n**—основания) классифицируются в зависимости от природы гетероатома, к неподеленной паре электронов которой присоединяется протон, т.е.

в) сульфоновые основания (центр основности -S-)

тиолы RSH сульфиды (тиоэфиры) RSR

г) фосфониевые основания (центр основности -P-) фосфиты RPH2

Чем стабильнее катион, тем сильнее основание

Подобно стабильности анионов, стабильность катионов зависит от тех же двух факторов:

- 1. взаимного влияния катиона в молекуле, которая проявляется через электронные эффекты (J, M) заместителей, электроотрицательность и поляризуемость атомов в центре основности;
 - 2. степени сольватации

Концепция жестких и мягких кислот и оснований (ЖМКО)

Согласно Пирсону Льюисовские кислоты и основания делятся на жесткие и мягкие. Такая классификация связана с поляризуемостью этих соединений, жесткие кислоты реагируют с жесткими основаниями, а мягкие кислоты – с мягкими основаниями (принцип ЖМКО).

4.Иллюстративный материал: приведен в виде презентации с использованием мультимедиа, а также используются во время лекции таблицы.

5. Литература:

Основная:

- 1. Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. - Шымкент : Әлем, 2016. 500 бет. с.
- 2. Дәуренбеков, Қ. Н. Органикалық химия. Т.2 : окулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. 432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4. Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оку құралы, Шымкент, «Әлем» баспаханасы, 340 бет, 2024ж.
- 5.Зурабян, С. Э. Органическая химия : учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин ; под ред. Н. А. Тюкавкиной. М. : ГЭОТАР Медиа, 2013. 384 с. : ил
- 6.Зурабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p.
- 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty : "Evero" 2015. 180 p.
- 9.Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10. Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11. Органикалық химия. Т.2: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 388 бет.
- 12.Органикалық химия. Т.3: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 284 бет.

Дополнительная:

1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б. 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторнопрактических занятий по органической химии. Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

Лекционный комплекс

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

2Республиканская межвузовская электронная библиотека (РМЭБ) – http://rmebrk.kz

ЗЦифровая библиотека «Aknurpress» - https://www.aknurpress.kz/

4Электронная библиотека «Эпиграф» - http://www.elib.kz/

5Эпиграф - портал мультимедийных учебников https://mbook.kz/ru/index

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6.Контрольные вопросы:

1. Дайте определение «кислота» по теории Бренстеда. понятия Расположите в ряд по уменьшению кислотности группы следующих соединений и объясните результат: метиловый, изопропиловый, трет бутиловый спирты.

2. Дайте определение понятия «основание» по теории Бренстеда. Расположите следующие соединение в ряд возрастанию основности; метиламин, диметиламин, анилин, этанол, этилмеркаптан, этиламин.

Лекция №5

1.ТЕМА ЛЕКЦИИ: Реакционная способность углеводородов (алканы, алкены, диены, алкины, арены)

2. Цель: Сформировать знания реакций гомолитичекого типа неполярных тетрагонального атома углерода, а также способности локализованных и сопряженных двойных углерод-углеродных связей в открытых системах к электрофильному присоединению как основу для понимания аналогичных реакций в организме.

План

- 1. Углеводороды. Классификация. Номенклатура.
- 2. Химические свойства углеводородов.
- 3.Окисление углеводородов.
- 4. Ароматические углеводоры. Классификация. Номенклатура.
- 5. Химические свойства ароматических углеводородов.
- 6.Применение в фармации

3.Тезисы лекций

УГЛЕВОДОРОДЫ

Углеводородами называют органические соединения, молекулы которых состоят только из атомов углерода и водорода

зависимости строения углеродного скелета подразделяются на ациклические (алифатические), алициклические ароматические:

Кафедра химических дисциплин, биологии и биохимии

46/11

Лекционный комплекс

«АЛКАНЫ»

Насыщенные алифатические углеводороды общей брутто-формулы CnH2n+2 образуют гомологический ряд алканов. Их еще называют предельными углеводородами т.к. в них достигнута предельная степень насыщения атомами водорода. Они также могут называться парафинами. Начиная с углеводорода C_4H_{10} различают алканы с неразветвленной цепью (нормальные) и разветвленные алканы. С увеличением числа атомов углерода число возможных структурных изомеров резко возрастает. Начиная с углеводорода C_7H_{16} часть структурных изомеров может содержать ассиметрический атом углерода, так что число изомерных алканов из-за появления конфигурационных изомеров еще более увеличивается. Первые четыре алкана имеют тривиальные названия CH_4 — метан C_2H_6 - этан C_3H_8 -пропан C_4H_{10} - бутан. Начиная с C_5 названия гомологов образуются от греческих или латинских числительных и окончания «ан».

 C_5H_{12} – н-пентан

 C_6H_{14} - н-гексан

С₇H₁₆ - н-гептан

 C_8H_{18} - н-октан

С₉Н₂₀ -нонан

Неразветвленные (нормальные) алканы обозначаются буквой «н» перед название углерода. Разветвленные алканы рассматриваются как продукты замещения соответствующих неразветвленных углеводородов с возможно более длинной углеродной цепью. Атомы углерода этой цепи от ее начало до конца нумеруются арабскими цифрами так, чтобы атомы углерода, содержащие боковые цепи, получили наименьшие номера. Под боковыми цепями (заместителями) понимают алкильные группы, названия которых производится от названия алкана с тем же числом атомов углерода с заменой окончания «ан» на «ил». Двухвалентные остатки получают окончание «иден» (две свободные валентности находятся у одного и того же атома углерода). Например:

CH₃-CH₂- -CH₂-CH₂- CH₃-CH- этил этилен этилиден

В соответствии с этими правилами углеводород

CH₃-CH-CH₂-CH₂-CH₂-CH₃

CH₃ CH₂ CH₂-CH₃

В зависимости от числа других углеродных атомов, с которыми непосредственно связан рассматриваемый углеродный атом молекулы, различают первичные, вторичные, третичные и четвертичные углеродные атомы:

CH₃ CH₃

Покументи й комплоко

Лекционный комплекс

$$H_3C$$
 - CH_2 - CH - C - CH_3 CH_3

Первичный вторичный третичный четвертичный

При комнатной температуре первые четыре н— алкана газообразные углеводороды, от C_5 до C_{15} — жидкие, а начиная с C_{17} — твердые.

Природными источниками алканов являются природный газ и нефть. В нефтехимической промышленности алканы получают перегонкой нефти. Сейчас применяют другие, более современные методы получения алканов из нефти и природного газа.

В обычных условиях алканы химически инертны. Они не взаимодействуют с концентрированными серными и азотными кислотами, с концентрированными и расплавленными щелочами, не окисляются перманганатом калия $KMnO_4$ «хромовой смесью (бихромат калия, $KMnO_4$ и концентрированная серная кислота H_2SO_4)

Химическая устойчивость алканов объясняется высокой прочностью σсвязей С-С и С-Н, а также их неполярностью т.е. симметричным распределением электронной плотности в межьядерном пространстве. Равномерное распределение электронной плотности связанно с небольшим различием электроотрицательности атома углерода в sp3- гибридном состоянии (2,5) и атома водорода (2,1)

Неполярные связи С-С и С-Н в алканах не склонны к ионному разрыву, но способны расщепляться гомолитически под действием активных свободных радикалов, которые можно получить тремя путями:

- 1. термолиз т.е. расщепление ковалентной связи за счет тепловой энергии
- 2. фотолиз т.е. расщепление связи при УФ-облучении
- 3. образование радикалов в окислительно-восстановительных процессах.

Поэтому для алканов характерны радикальные реакции, т.е. алканы вступают в реакции, протекающие по механизму радикального замещения, обозначаемого символов SR.

Галогенирование. Алканы очень активно взаимодействуют с фтором, реакции с хлором происходят при освещении. Взаимодействие с бромом осуществляется только при освещении и нагревании. Иод с алканами не реагирует. При взаимодействии алканов с галогенами (хромом и бромом) под действием УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов. Общую схему этой реакции покажем на примере метана.

 ${
m CH_4}$ ${
m CH_3CI} + {
m CH_2CI_2} + {
m CHCI_3} + {
m CCI_4}$ метан хлорметан дихлорметан трихлор тетра метан хлорметан

Лекционный комплекс

Галогенирование алканов, содержащих первичные, вторичные и третичные атомы углерода, приводит к смесям изомерных продуктов замещения. (Соотношение между ними зависит от условий реакции и природы субстрата преимущественной реагента). В субстрате радикальной подвергаются третичные, затем вторичные и в последнюю очередь первичные С-Н связи.

процессов Окисление алканов. Важный тип радикальных взаимодействие органических соединений с кислородом. Молекула кислорода представляет собой би- радикал О-О и может реагировать с соединениями, содержащими С-Н связи по радикальному механизму с образованием гидропероксидов или продуктов дальнейших превращений:

$$R H + O_2 R O O H$$

Вазелиновое масло - смесь алканов до C_{15} , бесцветная жидкость без запаха и вкуса, используется в медицине и парфюмерии. В технике – основа кислотостойких неокисляющихся смазочных масел.

Вазелин – смесь жидких и твердых алканов до С₁₅. В медицине применяется как основа мазей.

<u>Парафин</u> - смесь твердых алканов C_{18} - C_{35} . Белая масса без запаха и вкуса, применяется для пропитки различных материалов (бумага, ткани, древесина) для придания им гидрофобных свойств, т.е. несмачиваемости водой. В медицине используется для физиотерапевтических процедур (парафинолечение).

«АЛКЕНЫ»

Соединения, содержащие двойные или тройные связи, называются ненасыщенными, т.к. атомы, образующие такие связи могут присоединить по одному или соответственно по два заместителя:

Ненасыщенные соединения, содержащие двойную связь С=С, называются алкены или олефины. Т.к. углерод-углеродная π-связь менее прочна (60 ккал/моль), чем о-связь (-80 ккал/моль), то атака реагента будет направлена на π -систему.

II. Реакция электрофильного присоединения (AE)

Кафедра химических дисциплин, биологии и биохимии

Лекционный комплекс

$$C = C + Br \longrightarrow Br \longrightarrow C = C \longrightarrow C - C \longrightarrow Br$$
Субстрат реагент $Br^{\delta+}$ Br^{+} Br^{+}

π-комплекс

Гидратация – роль кислотного катализа

Реакция гидратации алкенов, т.е. присоединение Н2О по двойной имеет большое практическое знчение, т.к. лежит в основе фракций промышленного способа получения спиртов из нефтяных ненасыщенных углеводородов. Так получают из этилена этиловой спирт, широко используемый в медицине и фармации.

Взаимодействие алкенов с водой является реакцией электрофильного присоединения. Электрофильное присоединение (АЕ) в ряду алкенов можно рассматривать как кислотно-основное взаимодействие, в котором алкен ведет себя как основание, а реагент как кислота. Целый ряд протонных кислот (кислот Бренстеда) и кислот Льюиса способен присоединиться к алкенам: галогено водороды (гидрогалогенирование), галогены (галогенирование), вода (гидратация), серная кислота и др. Свободные галогены являются потенциальными кислотами Льюиса, т.к. они могут быть поляризованы электрофильными реагентами или катализаторами.

«АЛКАДИЕНЫ»

Диеновые углеводороды имеют две двойные связи в молекуле, т.е. на водорода меньше, чем соответствующие им предельные углеводороды. Общая формула алкадиенов CnH₂n-2

В зависимости от взаимного расположения двойных связей диеновые углеводороды можно разделить на три основных типа:1. кумулированные диены – аллен и его гомологи С=С=С $H_2C=C=CH_2$

2. сопряженные (коньюгированные) (связи) диены – дивинил и его гомологи

$$C=C-C=C$$
 $H_2C=CH-CH=CH_2$

Дивинил

3. Диены с изолированными двойными связями

$$C=C-(CH_2)n-C=C; n\geq 1$$

Полимеризация. Важной особенностью диеновых углеводородов с связями является способность их полимеризоваться в сопряженными каучукоподобные продукты.

При полимеризации отдельные молекулы мономеров могут соединяться друг с другом в 1,2; в 1,4-положении или одна молекула реагирует в 1,2-, а другая в 1,4- положении:

«АЛКИНЫ»

- 1. Алкинами называются углеводороды, содержащие тройную связь углерод углеродную
- -С С- Простые алкины характеризуются общей формулой Сп H_2 п-2. Простейший представитель этого класса ацетилен С $_2$ H_2 , поэтому алкины называют также «ацетиленами» или замещенными ацетиленами.

Химические свойства

Реакции электрофильного присоединения.

$$HC \equiv CH$$
 Pd
 $H_2C = CH_2$
 Pd
 Pd
 $CH_3 - CH_3$

4.Гидратация (реакция Кучерова)

Ацетилены очень легко присоединяют воду и кислоты. Присоединение сильных кислот часто идет без катализаторов, присоединение воды ведут в присутствии сульфата ртути (реакция Кучерова) или над гетерогенными катализаторами.

При этом из ацетилена образуется уксусный альдегид, а из других ацетиленовых углеводородов – кетоны.

$$HC \equiv CH \xrightarrow{H_2O} CH_3 - C \xrightarrow{O} H$$

$$CH_2 - C \equiv CH \xrightarrow{H_2O} CH_3 - C - CH_3$$

$$(HgSO_4)$$

Первая реакция используются в промышленном синтезе уксусного альдегида из ацетилна. Механизм реакции Кучерова:

$$HC = CH + Hg^{2+} \longrightarrow HC = CH \longrightarrow Hg^{+} - CH = CH - OH \longrightarrow Hg^{2+}$$
 Hg^{2+}

5.Окисление алкинов. Алкины, подобно алкенам, легко окисляются. В качестве окислителей испольтзуют перманганат калия в нейтральной и щелочной среде, озон, тетраоксид рутения RuO₄, диоксид селена SeO₂ и др. При окислении перманганатом калия в щелочной среде или озоном происходит расщепление молекулы алкина по тройной связи и образуются карбоновые кислоты:

CH₃- CH₂- COOH + CH₃-CH₂- C C-CH₃ пентин -2 пропановая кислота CH₃-COOH

уксусная кислота

Алкин с концевой тройной связью при окислении в этих условиях образуют карбоновую кислоту и оксид углерода (IV):

> CH₃- CH₂-C CH CH₃-CH₂COOH +CO₂ бутин -1 пропановая кислота

Восстановление алкинов. В присутствии катализаторов Pd, Pt или Ni Присоединение алкины восстанавливаются с образованием алканов. водорода осуществляется ступенчато:

CH₃- C CH CH3-C CH₂ CH3-CH2-CH3 пропин пропан пропен Paleduk Skindeduk skindedu

Ароматические углеводороды (арены)

Термины ароматические первоначально применяли для органических соединений, которые или сами имели приятный запах, или же выделялись из природных веществ, обладающих приятным запахом. В дальнейшем это название сохранилось за большой группой органических соединений, проявляющих сходные свойства с бензолом.

К ароматическим углеводородам относятся соединения, молекулы которых содержат одно или несколько бензольных колец. Для них применяют также название арены.

В зависимости от числа бензольных циклов, входящих в состав молекулы, различают одноядерные (моноциклические) и многоядерные (полициклические) арены. Многоядерные арены подразделяются на арены с конденсированными циклами (аннелированные) и изолированными циклами.

«МОНОЯДЕРНЫЕ АРЕНЫ»

Ароматическими соединениями обычно называют карбоциклические соединения, в молекулах которых имеется особая циклическая группировка из шести углеродных атомов — <u>бензольное ядр</u>о. Простейшим веществом; содержащим такую группировку, является углеводород бензол.

Реакции электрофильного замещения (S_E).

Механизм:

При взаимодействии с электрофильными реагентами бензол и его гомологи сначала образуют ?-комплекс:

$$+E^+X^ \rightarrow$$
 E^+X^- электрофильный реагент π -комплекс

$$+HBr+FeBr_3$$
 Br
 Br
 $FeBr_3$
 Br
 Br
 Br
 Br
 Br

4.Иллюстративный материал: приведен в виде презентации с использованием мультимедиа, а также используются во время лекции таблицы.

Кафедра химических дисциплин, биологии и биохимии

46/11

Лекционный комплекс

5.Литература:

Основная:

- 1.Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016. 500 бет с
- 2.Дәуренбеков, Қ. Н. Органикалық химия. Т.2 : оқулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. 432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4. Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет, 2024ж.
- 5.Зурабян, С. Э. Органическая химия : учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин ; под ред. Н. А. Тюкавкиной. М. : ГЭОТАР Медиа, 2013. 384 с. : ил
- 6.Зурабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p.
- 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty : "Evero" 2015. 180 p.
- 9.Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10.Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11. Органикалық химия. Т.2: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 388 бет.
- 12.Органикалық химия. Т.3: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 284 бет.

Дополнительная:

- 1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б.
- 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторно-практических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

- 2Республиканская межвузовская электронная библиотека (РМЭБ) http://rmebrk.kz/ 3Цифровая библиотека «Aknurpress» https://www.aknurpress.kz/
- 4Электронная библиотека «Эпиграф» http://www.elib.kz/
- 5Эпиграф портал мультимедийных учебников https://mbook.kz/ru/index/

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6.Контрольные вопросы:

- **1.** Покажите региоселективность реакции радикального замещения на примере бромирования пропана и 2-метилпропана при облучении УФ-светом.
- **2.** Объясните склонность алкенов к реакциям электрофильного присоединения A_E , исходя из их электронного и пространственного строения.
- **3.** Напишите реакции галогенирования, гидрогалогенирования, гидратации (в кислой среде) этилена, пропилена, бутена -1, 2 метилпропена. Опишите механизм каждой из этих реакций.

Лекция №6

1.ТЕМА: Галогенпроизводные углеводородов

2.Цель: Выработать умение прогнозировать реакционную способность галогенпроизводных углеводородов в конкурентных реакциях

нуклеофильного замещения и элиминирования в зависимости от строения субстрата и типа реагента.

План:

- 1. Реакции нуклеофильного замещения (S_{N1}, S_{N2}) механизмы.
- 2. Реакция отщепления (элиминирования, E), механизм. Правила Зайнева.
- 3. Алкенилгалогениды. Аллил-и винилгалогениды, причины различной реакционной способности галогена.

3.Тезисы лекции

Галогенопроизводные- продукты замещения в утлеводородах одного или нескольких атомов H_2 атомами галогенов.

Классификация галогенопроизводных в зависимости от числа и расположения атомов галогена и от природы углево-дородного радикала:

- 1. Моногалогенопроизводные предельных углеводородов,
- 2. Ди- и полигалогенопроизводные предельных углеводоро-дов.
- 3. Галогенопроизводные непредельных углеводородов.
- 4. Галогенопроизводые ароматических углеводородов.
- а)галоген в ядре
- б) галоген в боковой цепи.
- 5. Геминальные (у одного) и вицинальные (у двух соседних) дигалогенопроизводных углеводородов,

Реакции нуклеофильного замещения SN2, SN1 механизмы.

Галогенопроизводные углеводородов отличаются от изученных ранее углеводородов наличием ковалентной связи углерод-галоген. Эта связь из-за различия электроотрицательности элементов сильно поляризована, что приводит к появлению электроно-дефицитного атома углерода несущего частичный положительный заряд (δ +) цеңтра.

$$C\delta+$$
 $F\delta C\delta+$ $CI\delta C\delta+$ $Br\delta C\delta+$ $I\delta-$

Такой атом является электрофильным и может подвергаться атаке нуклеофилом. Из-за сильной поляризации связи в процессе реакции происходит ее гетеролитический разрыв и замещение на нуклеофил:

Реакция нуклеофильного замещения (схема)

$$C \rightarrow X + Nu \rightarrow Nu - C \rightarrow +X^-$$
 субстрат нуклеофил

Образование новой связи С-Nu происходит за счет пары ё нуклеофила. (Анионы и нейтральные молекулы, имеющие неподеленную пару ё у гетероатома

 $(H_2O, KOH, NH_3, RNH_2 и др).$

Можно получить спирты ROH, тиолы RSH, тиоэфиры RSR (сульфиды), нитрилы RSN, простые эфиры ROR, первичные амины RNH2, вторичные амины R2NH, третичные амины R3N, четвертичные аммониевые соли

Реакиия нуклеофильного замещения осуществляется только в том. случае, если уходящий анион стабильнее вступающего. Реакция нуклеофильного замещения в зависимости от строения субстрата, типа реагента и реакционной среды может протекать по двум механизмам:

SN1 мономолекулярное нуклеофильное замещение

$$C - X$$
 $C^{\oplus} + X^{\theta}$ Nu^{*} Nu^{*} Nu^{*} $C - Nu$ (рацемат)

SN2 –бимолекулярное нуклеофильное замещение

$$Nu = C - X \longrightarrow Nu - C - X \longrightarrow Nu - C + X^{\oplus}$$
(D)
(L)

При SN1 скорость реакции определяется самой медленной (лимитирующей) стадией, в которой участвует только одно соединение- субстрат RX. Молекула субстрата диссоцирует с образованием карбониевого иона и уходящей группы.

При SN2 скорость реакции пропорциональна концентрациям обоих реагирующих веществ (субстрата и реагента). Атака нуклеофила и отщепление уходящей группы происходит одновременно без промежуточного образования карбкатиона. Входящий нуклеофил проходит к молекуле со стороны, противоположной уходящей группе, и в переходном состоянии разрыв связи C-X происходит по мере образования новой связи C-Nu. Это приводит к «выворачиванию молекулы наизнанку», а поэтому говорят, что реакция происходит с обращением конфигурации.

$$Nu \not= C - X \longrightarrow [Nu \longrightarrow C \longrightarrow X] \longrightarrow Nu \longrightarrow C \longrightarrow X$$

$$(L)$$

Если исходное соединение оптически активно, то продукт реакции также оптически активен. Тенденция субстрата RX вступать в реакции зависит от природы как X (уходяшей группы), так и органического радикала.

Кафедра химических дисциплин, биологии и биохимии

Лекционный комплекс

Ряд реакционной способности для SN2-механизма обратен ряду для механизма SN1. Общий результат; первичные алкилгалогениды и вторичные с *небольшими* по объему заместителями реагируют по SN2, третичные по SN1. Для вторичных соединений с большими заместителями - они могут реагировать по любому механизму в зависимости от природы нуклеофила, уходящей группы, и растворителя. Высокая концентрация сильного нуклеофила, способствует SN2 -механизму, а полярный растворительмеханизму SN1 т.к. сольватация стабилизирует промежуточные карбониевые ионы.

Гидролиз
$$R-CI+HOH \longrightarrow R-OH+HCI$$

 $R-CI+NaOH\longrightarrow R-OH+NaCI$

Водный раствор

Алкоголиз
$$C_2H_5Br + NaOC_2H_5 \longrightarrow C_2H_5 - O - C_2H_5 + NaBr$$

Хлороформ

(СНСІз-бесцветная характерным (трихлорметан) жидкость сладковатым запахом (т. кип.61,20С). Хлороформ мало растворим в воде, хорошо растворим в органических растворителях. Он растворяет многие органические вещества и широко применяется как растворитель в химических производствах, а также для извлечения многих веществ из растительного сырья, в частности жиров, алкалоидов, смол и др.

Иодоформ (трииодметан) СНІ₃-Твердое кристаллическое лимонно-желтого цвета с резким характерным устойчивым запахом (т. пл. 116°C). Практически нерастворим в воде, хорошо растворим в хлороформе и диэтиловом эфире. Иодоформ с давних времен применяется в качестве антисептического средства в стоматологии, а также в форме присыпок и мазей для лечения инфицированных ран и язв.

Бесцветная подвижная жидкость с запахом, напоминающим запах хлороформа (т.-кип. 49—51°С). Мало растворим в воде, хорошо растворяется в этаноле, диэтиловом эфире, хлороформе. Фторотан обладает сильным наркотическим действием и низкой токсичностью. Он широко применяется в медицинской практике в качестве средства для комбинированного ингаляционного наркоза.

$\mathbf{\mathcal{J}}$ ифтордихлорметан (фреон-12) С F_2 С I_2 .

В обычных условиях дифтордихлорметан является газообразным веществом без запаха. Он не горюч, не взрывоопасен, не токсичен и не

OŃTÚSTIK-QAZAQSTAN SOUTH KAZAKHSTAN SKMA MEDISINA MEDICAL **AKADEMIASY ACADEMY** «Онтустік Қазақстан медицина академиясы» АҚ АО «Южно-Казахстанская медицинская академия» Кафедра химических дисциплин, биологии и биохимии 46/11

Лекционный комплекс

вызывает коррозии металлов. Указанные свойства позволяют исполь-зовать фреон-12 в качестве хладоагента в холодильных установках, а также в качестве пропеллента производстве аэрозольных лекарственных препаратов.

Хлорбензол С₆Н₅СІ. Бесцветная жидкость со своеобразным запахом (т.кип.132°С). С водой образует азеотропную смесь, содержащую 71,6 % хлорбензола. Растворяется в бензоле, этаноле, хлороформе и других органических растворителях. Хлорбензол применяется в производстве фенола, анилина, лекарственных средств.

4.Иллюстративный материал: приведен виде презентации мультимедиа, а также используются во время лекции использованием таблицы.

5. Литература:

Основная:

- 1.Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016. 500 бет. с.
- 2.Дәуренбеков, Қ. Н. Органикалық химия. Т.2 : оқулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. 432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4. Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет,2024ж.
- 5.Зурабян, С. Э. Органическая химия: учеб. для мед.вузов/С. Э. Зурабян, А. П. Луизин; под ред. Н. А. Тюкавкиной. - М.: ГЭОТАР - Медиа, 2013. - 384 с.: ил
- 6.3урабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p.
- 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty: "Evero" 2015. - 180 p.
- 9.Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10.Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с
- 11.Органикалық химия. Т.2: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 388 бет.
- 12.Органикалық химия. Т.3: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 284 бет.

Дополнительная:

- 1. Патсаев Ә. К., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б.
- 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторнопрактических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

- 2Республиканская межвузовская электронная библиотека (РМЭБ) http://rmebrk.kz
- ЗЦифровая библиотека «Aknurpress» https://www.aknurpress.kz/
- 4Электронная библиотека «Эпиграф» http://www.elib.kz/
- 5Эпиграф портал мультимедийных учебников https://mbook.kz/ru/index Skina.edu.kl. skina.edu

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru skna.edu.kl skn

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6.Контрольные вопросы:

OŃTÚSTIK-QAZAQSTAN MEDISINA AKADEMIASY «Оңтүстік Қазақстан медицина академиясы» АҚ	SKMA -1979- 	SOUTH KAZAKHSTAN MEDICAL ACADEMY AO «Южно-Казахстанская	медицинская академия»
Кафедра химических дисциплин, биологии и биохимии			46/11
Лекционный комплекс			

- в молекулах 1. Покажите распределение электронной плотности алкилгалогенидов. На примере этилбромида объясните способность соединений к реакциям нуклеофильного замещения и элиминирования.
- 2. Объясните механизм реакции нуклеофильного замещения на примере получения этилхлорида из этилового спирта. Обоснуйте кислотного катализатора.
- 3. Напишите схему реакции взаимодействия н-пропилбромида с аммиаком, цианидом натрия, этоксидом натрия, этиламином. Дайте определение понятию «нуклеофил». Выделите в каждом реагенте нуклеофильную часть. Назовите классы органических соединении относятся полученные вещества
- 4. Проведите реакцию метил иодида с водным раствором гидроксида калия. Опишите механизм реакции. Зависит ли скорость реакции от концентрации реагента.
- раствором 5. Проведите реакцию трет-бутилбромида водным гидроксида калия. Опишите механизм.

Лекция №7

1.ТЕМА: Гидроксипроизводные углеводородов. Простые эфиры сульфиды. Амины.

2.Цель: Выработать умение прогнозировать реакционную способность реакциях нуклеофильного спиртов в конкурентных замещения элиминирования в зависимости от строения субстрата и типа реагента.

- 1. Классификация и номенклатура спиртов.
- 2. Химические свойства спиртов, аминов и простых эфиров
- 3. Реакции нуклеофильного замещения в спиртах. Межмолекулярная и внутримолекулярная дегидратация.

3. Тезисы лекций

Гидроксильная группа - ОН является функциональной группой двух важных классов соединений-фенолов и спиртов. В фенолах она связана с sp2 гибридизованным атомом углерода бензольного кольца и это придает ей особые химические свойства. Спирты содержат ОН-группу, связанную с sp3 -гибридизованным атомом углерода. Гидроксильные группы такого типа устойчивы. - X SKNa. edu. Kl. skina. e January Edul Klasking. Edul in a collin Klasking edilik sing and state of the s

Кафедра химических дисциплин, биологии и биохимии

Лекционный комплекс

Одноатомные спирты.

 H_2 -CH₂-OH
1-пропанол $CH_2 = CH - CH_2 - C - CH_3$ H4-пентен-2-ол

ых у одного атом?
— диолы) Соединения, в которых у одного атома углерода имеют две ОН- группы, т.е. 1,1- диолы (или гем – диолы), находятся в равновесии скарбонильным соединением и водой. Обычно это равновесие сдвинуто в сторону карбонильного соединения, так что гем – диолы не представляют обычно интереса.

Независимо от названий спирты классифицируют по числу атомов водорода, связанных с карбинольным углеродом. Первичный спирт имеет два атома водорода у карбинольного атома углерода, вторичный спирт-один атом водорода и -третичный спирт ни одного. Для удобства метиловый спирт также относят к первичным спиртам.

Химические свойства.

Спирты амфотерны. Благодаря полярности связей О-Н они могут отщеплять протон, образуя алкоголят (алкоксид) -ионы. Спирты более слабые кислоты, чем воды. Из-за -М-эффекта алкильных групп при переходе от первичных к третичным спиртам кислотность падает Напротив, заместители с -І-эффектом, находящиеся в α-положении к гидроксильной группе, повышают ее кислотность. С сильно электроположительными металлами, такими как натрий, калий, магний или алюминий, спирты реагируют о образованием алкоголятов (алкоксидов). Например:

$$R - O - H \xrightarrow{\text{Na}} R - O \cdot \text{Na}^{+}$$

$$-\frac{1}{2} H_{2}$$

Алкоголяты представляют собой белые твердые соединения, гидролизуемые водой.

Сильные кислоты способны протонировать спирты о образованием алкилоксониевых солей:

$$R - \ddot{O} - H \xrightarrow{+HX} R - \ddot{\ddot{O}} - HX$$

Аналогично реагирует со спиртами кислоты Льюиса, такие как фторид бора или хлорид цинка.

Нуклеофильные свойства спиртов: образование простых и сложных эфиров. Спирты взаимодействуют с минеральными и органическими кислотами с образованием соответствующих сложных эфиров и воды

Межмолекулярная дегидратация спиртов. В присутствии концентрированной H_2SO_4 , безводной H_3PO_4 или таких катализаторов как оксид или фосфат AI из двух молекул спирта отщепляется молекула H_2O , в результате чего получают простые эфиры. В зависимости от структуры и условий проведения процесса реакция может протекать по механизму SN_1 и SN_2 (замещение нуклеофильное мономолекулярное и бимолекулярное).

материал: приведен виде презентации B

4.Иллюстративный также используются во время лекции использованием мультимедиа, а таблицы.

5.Литература:

Основная:

- 1.Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016. 500 бет. с.
- 2. Дәуренбеков, Қ. Н. Органикалық химия. Т.2 : оқулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. -432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4.Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет,2024ж.
- 5.Зурабян, С. Э. Органическая химия: учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин; под ред. Н. А. Тюкавкиной. - М.: ГЭОТАР - Медиа, 2013. - 384 с.: ил
- 6.Зурабян С.Э. Органическая химия. Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p. 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. - Almaty: "Evero 2015. - 180 p.
- 9.Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10. Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11. Органикалық химия. Т.2: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 388 бет.
- 12.Органикалық химия. Т.3: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 284 бет.

Дополнительная:

- 1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б.
- 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторнопрактических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

- 2Республиканская межвузовская электронная библиотека (РМЭБ) http://rmebrk.kz
- ЗЦифровая библиотека «Aknurpress» https://www.aknurpress.kz/
- 4Электронная библиотека «Эпиграф» http://www.elib.kz/
- 5Эпиграф портал мультимедийных учебников https://mbook.kz/ru/index

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6.Контрольные вопросы:

- 1. Напишите схему реакции дегидратации этилового спирта. По какому механизму протекает эта реакция?
- 2. Назовите продукт образующийся в результате реакции гидратации этилового спирта
- 3. Какие соединения получаются при действии этоксида натрия в спиртовом растворе на 2-хлорпропан и 2- метил-2-хлорпропан? Опишите механизм реакций.

пфедра химических дисциплин, оиологии и оиохим

Лекционный комплекс

Проведите реакцию дегидратации этилового и трет-бутилового спиртов. Объясните механизм. Реакционная способность альдегидов и кетонов.

Лекция №8

1.ТЕМА: Реакционная способность альдегидов и кетонов

2.Цель: Сформировать знания химических свойств карбонилсодержащих соединений для понимания их реакционной способности, обуславливающей протекание ряда реакций в биологических системах.

План:

- 1. Альдегиды. Кетоны. Номенклатура. Изомерия.
- 2. Строение оксогруппы.
- 3. Химические свойства альдегидов и кетонов.

Тезисы лекций

раствора, который называют формалин (36,5-37,5%) (антисептин).

$$CI_3C-C$$
 $+$ H_2O \longrightarrow $CI_3C-C-OH$ H хлораль вода хлоральгидрат

Хлоральгидрат-кристаллическое вещество. Применяют как успокаивающее, снотворное, противосудорожное средство.

$$H_3C$$
 $C = CH - CH_2 - CH_2 - C = CH - C$ H Цитраль

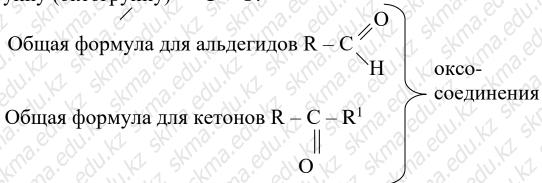
Цитраль используется в глазной практике.

$$\begin{array}{c|c} CH_3 \\ & \downarrow \\ C-CH-N \end{array} \cdot HCI$$

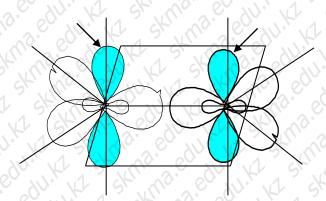
АО «Южно-Казахстанская медицинская академия»

Кафедра химических дисциплин, биологии и биохимии

Лекционный комплекс


46/11

 C_2H_5


Фепранон

Фепранон-вещество, угнетающее аппетит.

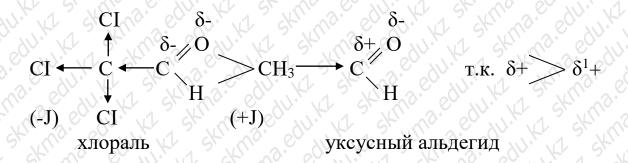
Альдегидами и кетонами (оксосоединениями) называют производные углеводородов, содержащие карбонильную группу (оксогруппу) C = O.

2. Атомы углерода и кислорода карбонильной группы находятся в состоянии Sp^2 -гибридизации, поэтому карбонильная группа и связанные с ней атомы лежат в одной плоскости. π -Связь образована перекрыванием p_z -орбиталей. Неподеленные пары электронов атома кислорода находятся на Sp^2 -орбиталях, т.е. перпендикулярно p_z -орбиталям и не вступают в сопряжение с π -связью.

 π -Связь карбонильной группы из-за различной электроотрицательности связанных атомов сильно поляризована:

46/11

Лекционный комплекс


C = O

Атом углерода поэтому электрофилен и взаимодействует с нуклеофильным реагентом. Поэтому для оксосоединений характерны реакции нуклеофильного присоединения (A_N) , в отличие от алкенов, для которых харктерны реакции электрофильного присоединения, обусловленные наличием C=C-связи.

Реакционная способность альдегидов и кетонов зависит от электронных эффектов заместителей и пространственных факторов.

Легкость нуклеофильной атаки определяется величиной частичного положительного заряда δ + на карбонильном атоме углерода. Электронодонорные заместители, связанные с карбонильной группой, понижают δ + и, следовательно снижают ее реакционную способность. Поэтому альдегиды более реакционноспособны, чем кетоны.

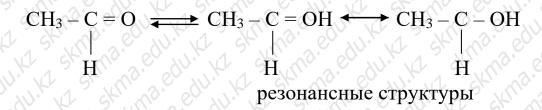
Электроноакцепторные заместители увеличивая положительный заряд, повышают реакционную способность карбонильной группы. Поэтому:

Объемистые заместители затрудняют подход нуклеофила к карбонильному атому углерода, из-за чего снижается реакционная способность карбонильных соединений в реакциях $A_{\rm N}$.

46/11

Лекционный комплекс

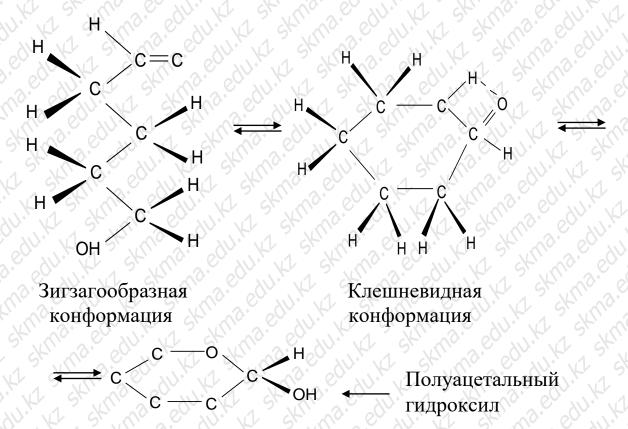
<u>Присоединение воды</u> (гидролиз, гидратация) — это обратимая реакция. Степень гидратации альдегида или кетона в водном растворе зависит от их строения. Продукт гидратации обычно выделить не удается. Например, муравьиный альдегид в водном растворе гидратирован более чем на 99,9%, а ацетон практически не гидратирован.


Трихлоруксусный альдегид (хлораль) гидратирован полностью. Это можно объяснить влиянием электроноакцепторной трихлорметильной группы, которая стабилизирует хлоральгидрат и это кристаллическое вещество отщепляет воду только при перегонке в присутствии водоотнимающих средств (H_2SO_4)

$$CI \longrightarrow S+O$$
 $CI \longrightarrow CI \longrightarrow C$ OH $CI \longrightarrow CI \longrightarrow C$ OH OH OH OH OH OH

Хлоральгидрат применяется в медицине как успокаивающее и снотворное средство.

<u>Присоединение спирта</u>. Вначале из альдегида и 1 моля спирта путем реакции нуклеофильного присоединения (A_N) образуется полуацеталь. Так как спирт является слабым нуклеофилом, реакцию проводят в присутствии кислотного катализатора, который активирует альдегид, увеличивая частичный положительный заряд карбонильного атома углерода.


Положительный заряд на атоме углерода говорит об усилении карбонильной активности. Активированный альдегид вступает во взаимодействием со спиртами.

образовавщегося катиона протекает Стабилизация протона (катализатора) и превращением выбросом полуацеталь.

Образование полуацеталя особенно легко протекает в случае 1,5- и 1,4-гидроксикарбонильных соединений, содержащих одновременно спиртовую и альдегидную функциональные группы, сближенные в пространстве. A Skind edu. K. skind edu. skind edu. k. skind edu. k. skind edu. k. skind edu. k. skind edu. skind

46/11

Лекционный комплекс

Образование внутренних полуацеталей лежит в основе химии важнейшего класса биологически активных соединений углеводов.

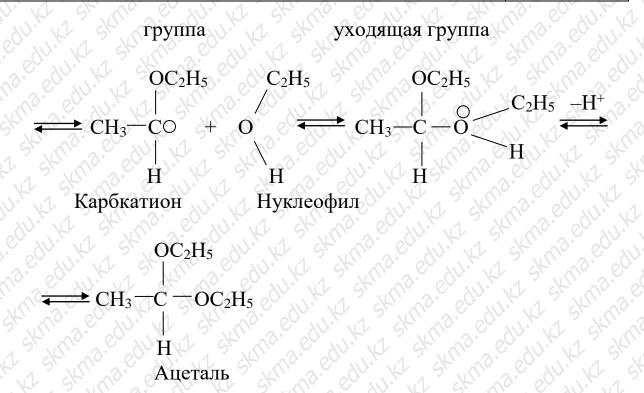
Превращение <u>полуацеталя в ацеталь</u> также происходит в условиях кислотного катализа. Реакция протекает по механизму нуклеофильного замещения (S_N) в отличие от реакции получения полуацеталя, где реализуется нуклеофильное присоединение (A_N) .

Роль катализатора состоит в превращении плохо уходящей группы (OH⁻) в хорошо уходящую и стабильную молекулу воды.

$$OC_{2}H_{5}$$
 $OC_{2}H_{5}$ $OC_{2}H_{5}$

OŃTÚSTIK-QAZAQSTAN

MEDISINA


AKADEMIASY

«Оңтүстік Қазақстан медицина академиясы» АҚ

Кафедра химических дисциплин, биологии и биохимии

46/11

Лекционный комплекс

4.Иллюстративный материал: приведен в виде презентации с использованием мультимедиа, а также используются во время лекции таблицы

5. Литература:

Основная:

- 1.Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016. 500 бет. с.
- 2.Дәуренбеков, Қ. Н. Органикалық химия. Т.2: оқулық / Қ. Н. Дәуренбеков. Шымкент: Әлем, 2016. 432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4.Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет,2024ж.
- 5.Зурабян, С. Э. Органическая химия : учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин ; под ред. Н. А. Тюкавкиной. М. : ГЭОТАР Медиа, 2013. 384 с. : ил
- 6.Зурабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p.
- 8.Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty : "Evero" 2015. 180 p.
- 9.Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10.Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11.Органикалық химия. Т.2 : оқулық / Қ.Н. Дәуренбеков. Алматы : New book, 2022. 388 бет.
- 12.Органикалық химия. Т.3 ; оқулық / Қ.Н. Дәуренбеков. Алматы : New book, 2022. 284 бет.

Дополнительная:

- 1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б.
- 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторно-практических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

2Республиканская межвузовская электронная библиотека (РМЭБ) – http://rmebrk.kz

3Цифровая библиотека «Aknurpress» - https://www.aknurpress.kz/

4Электронная библиотека «Эпиграф» - http://www.elib.kz/

5Эпиграф - портал мультимедийных учебников https://mbook.kz/ru/index/

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6.Контрольные вопросы:

- электронное строение оксогруппы с С=С связью. Сравните Обьясните свойства реакции нуклеофильного присоединения A_N оксосоединении.
- 2. Напишите реакции получения следующих ацеталей через стадию образования полуацеталей. 1,1-диэтоксипропана, 1,1-диметокси-2метилбутана.
- 3. Напишите схему гидролиза 1,1-диэтоксипропана. В какой среде происходит реакция?
- 4. Напишите схему реакции взаимодействия уксусного альдегида и ацетона с гидроксиламином, гидразином. Назовите механизм реакции

Лекция №9

- 1.ТЕМА: Реакционная способность карбоновых кислот.
- 2.Цель: Сформировать закономерностей особенностей знания И химическом поведении карбоновых кислот и ИХ функциональных производных, являющихся участниками ряда биохимических процессов.

- 1. Карбоновые кислоты. Классификация. Номенклатура.
- 2. Строение карбоксильный группы и карбоксилат-ионы.
- 3. Влияние карбоксильной группы на реакционную способность углеводородного радикала.
- 4. Реакция нуклеофильного замещения у sp²-гибридизованого атома углерода. Механизм.

3.Тезисы лекций

Карбоновые кислоты — это производные углеводородов, у которых один или несколько атомов водорода заменены карбоксильную (-СООН) группу.

Кислотные свойства карбоновых кислот. Электронное строение карбоксилат-иона.

-COOH — группа представляет собой сочетание двух функциональных групп: (>C=O) карбонильной и (-OH) — гидроксильной.

$$O^{\sigma^{-}}$$
 основной центр $O\leftarrow H$ кислотный центр электрофильный центр

Кислотные свойства (отщепление протона H⁺) карбоновых кислот проявляется в реакции с основаниями:

R-COOH + NaOH
$$\leftrightarrow$$
 R-COO $^{-}$ Na $^{+}$ + H₂O

 Θ A — заместители (Hal, -NO₂, >C=O, -OH) рассредотачивают (делокализуют) отрицательный заряд возникающего карбоксилатиона, тем самым, стабилизируя его и увеличивая силу кислот.

$$H_2C\leftarrow C$$
 $<$ $Cl\leftarrow CH\leftarrow C$ $<$ $Cl\leftarrow C\leftarrow C$ \downarrow $O\leftarrow H$ \downarrow $O\leftarrow H$ \downarrow Cl Cl

По мере увеличения расстояния от заместителя до карбоксильной группы влияние их на силу кислот быстро убывает, что связано с быстрым затуханием индуктивного эффекта по цепи.

Константы кислотности понижаются в ряду:

$$Cl_3C-COOH > Cl_3C-CH_2-COOH > Cl_3C-CH_2-CH_2-COOH$$

ЭД – заместители дестабилизируют карбоксилат-ион и тем самым уменьшают силу кислоты:

$$H$$
-COOH $> CH_3$ -COOH

		\ . \	1 1 10 0	
	OŃTÚSTIK-QAZAQSTAN	2985	SOUTH KAZAKHSTAN	Mr. Kr. Sc. We
И	MEDISINA	SKMA -1979-	MEDICAL	3.60 411. KJ 24. W
	АКАDEMIASY «Оңтүстік Қазақстан медицина академиясы» АҚ	Tilling.	ACADEMY AO «Южно-Казахстаї	нская медицинская академия»
1	Кафедра химических дисциплин	, биологи	и и биохимии	46/11

α,β-Ненасыщенные монокарбоновые кислоты, особенно тройной связью являются более сильными кислотами по сравнению с насыщенными. Это объясняется образованием сопряженной системы и изменением состояния гибридизации α-углеродного атома.

СН ₃ -СН ₂ -СООН(пропионовая кислота)	pKa=4,87	۰
Н ₃ С-СН=СН-СН ₂ -СООН (бутен-3-овая кислота)	рКа=4,51	
СН ₂ =СН-СООН (пропеновая кислота)	pKa=4,26	
Н ₃ С-С≡С-СООН (бутин-2-овая кислота)	pKa=2,6 ↓	Ò
НС≡С-СООН (пропиновая кислота)	рКа=1,84	

монокарбоновые Ароматические кислоты ПО кислотности превышают α,β-ненасыщенные кислоты. Отдаление карбоксильной группы от бензольного кольца в некоторой степени уменьшают кислотность.

$$C_6H_5$$
-COOH > C_6H_5 -CH₂-COOH pK_a =4,17 pK_a =4,31

4.Иллюстративный материал: приведен презентации виде мультимедиа, а также используются во время лекции использованием таблицы

5.Литература:

Основная:

- 1.Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016. 500 бет. с.
- 2. Дәуренбеков, Қ. Н. Органикалық химия. Т.2 : оқулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. 432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4. Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет,2024ж.
- 5.3урабян, С. Э. Органическая химия: учеб. для мед.вузов/С. Э. Зурабян, А. П. Луизин; под ред. Н. А Тюкавкиной. - М.: ГЭОТАР - Медиа, 2013. - 384 с.: ил
- 6.Зурабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p.
- 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty: "Evero 2015. - 180 p.
- 9.Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10.Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11.Органикалық химия. Т.2: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 388 бет.
- 12. Органикалық химия. Т.3: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 284 бет.

1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б.

Valuana V.E. Avusana A.A. Vuodina varra vuodina ja vadadua ja vadana varra vuodina ja vadana varra vuodina vuo

2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторно-практических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

- 2Республиканская межвузовская электронная библиотека (РМЭБ) http://rmebrk.kz/
- ЗЦифровая библиотека «Aknurpress» https://www.aknurpress.kz/
- 4Электронная библиотека «Эпиграф» http://www.elib.kz/
- 5Эпиграф портал мультимедийных учебников https://mbook.kz/ru/index/

69EC IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6.Контрольные вопросы:

- 1. Напишите схему реакции образования этилацетата, объясниет механизм
- 2. Назовите роль концентрированной серной кислоты в реакции этерификации
- 3. Приведите электронное строение карбоксильной группы и карбоксилатиона. Объясните влияние на кислотность электронодонорных и электроноакцепторных заместителей в углеводородном радикале кислот.
- 4. Опишите механизм реакции нуклеофильного замещения у тригонального атома углерода. Обоснуйте необходимость применения кислотного катализа на примере получения сложных эфиров-пропилацетата, метилового эфира бутановой кислоты.

Лекция №10

- **1.ТЕМА:** Реакционная способность гетерофункциональных органических соединений
- **2.Цель:** Сформировать знания закономерностей и особенностей в химическом поведении гетерофункциональных органических соединений.

План:

- 1. Гетерофункциональные органические соединения. Классификация. Номенклатура.
 - 2. Строение и химические соединения оксикислот.
- 3. Реакция нуклеофильного замещения у sp²-гибридизованого атома углерода. Механизм.

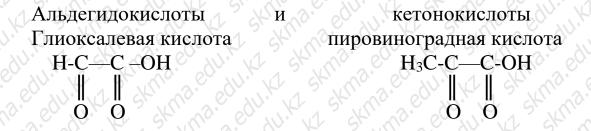
3.Тезисы лекций

Гетерофункциональные соединения — это соединения с двумя различными функциональными группами. Они способны вступать в реакции по каждой функциональной группе.

α-, β-, γ-галогенокислоты

Галогенокарбоновые кислоты являются более сильными кислотами, чем незамещенные и легко образуют соли:

R-CH-COOH +
$$H_2O \leftrightarrow R$$
-CH-COO $^- + H_3O^+$
 $Cl \qquad Cl$


-J эффект уменьшается с увеличением расстояния галогена от реакционного центра (карбоксильной группы).

α-, β-, γ-гидроксикислоты (оксикислоты)

Оксикислотами называются такие производные кислот, которые получаются в результате замещения одного или нескольких атомов водорода в радикале кислоты одной или нескольких ОН (спиртовых) группами.

Оксикислоты, содержащие —COOH и —OH группы дают все реакции, свойственные карбоксильной группе, спиртовому гидроксилу и реакции, характерные лишь для оксикислот.

β-Оксокислоты. Кето-енольная таутомерия.

Лекционный комплекс

Этиловый эфир ацетоуксусной кислоты (ацетоуксусный эфир) представляет собой смесь двух видов молекул, способных самопроизвольно переходить друг в друга.

Изомеры, обратимо переходящие один в другой называются *таутомерными формами* или таутомерами.

Обратимое превращение кетонной енольной групп называется кето-енольной таутомерией.

Строение свойства салициловой кислоты производных

Ацетилсалициловая кислота (аспирин)

фенилсалицилат (салол)

4.Иллюстративный материал: приведен в виде презентации использованием мультимедиа, а также используются во время лекции таблицы

5.Литература:

SOUTH KAZAKHSTAN
MEDICAL

ACADEMY

АО «Южно-Казахстанская медицинская академия»

Кафедра химических дисциплин, биологии и биохимии

46/11

Лекционный комплекс

Основная:

- 1.Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016. 500 бет. с.
- 2.Дәуренбеков, Қ. Н. Органикалық химия. Т.2 : оқулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. 432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4. Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет, 2024ж.
- 5.Зурабян, С. Э. Органическая химия : учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин ; под ред. Н. А. Тюкавкиной. М. : ГЭОТАР Медиа, 2013. 384 с. : ил
- 6.Зурабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p. 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty: "Evero", 2015. 180 p.
- 9.Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10. Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с
- 11.Органикалық химия. Т.2 : оқулық / Қ.Н. Дәуренбеков. Алматы : New book, 2022. 388 бет.
- 12. Органикалық химия. Т.3 : оқулық / Қ.Н. Дәуренбеков. Алматы : New book, 2022. - 284 бет.

Дополнительная:

- 1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б.
- 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторно-практических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

- 2Республиканская межвузовская электронная библиотека (РМЭБ) http://rmebrk.kz/
- 3Цифровая библиотека «Aknurpress» https://www.aknurpress.kz/
- 4Электронная библиотека «Эпиграф» http://www.elib.kz/
- 5Эпиграф портал мультимедийных учебников https://mbook.kz/ru/index/

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6.Контрольные вопросы:

- 1. Напишите схему реакции образования ненасыщенных кислот, лактидов, лактонов, объясните механизм7
- 2. Напишите формулу. β-Оксокислоты. Объясните кето-енольную таутомерию.

Лекшия №11

1.ТЕМА: Аминокислоты, пептиды, белки.

2.Цель: Сформировать знания о строения и свойств важнейших α-аминокислот и химических основ структурной организации белковых молекул для дальнейшего изучения биологических функций белков на молекулярном уровне.

План:

1. Аминокислоты. Строение и классификация α-аминокислот, входящих в состав белков. Стереоизмерия.

- 2. Химические свойства аминокислот. Специфические реакций α , β , γ аминокислот.
 - 3. Кислотно-основные свойства α-аминокислот.

- 4. Пептиды, белки. Строение пептидной группы.
- 5. Первичная структура пептидов и белков.

3.Тезисы лекций

Аминокислотами – называются карбоновые кислоты, содержащие в

своем составе аминогруппу.

Типы амино- кислот	Формулы	Название	Международна я номенклатура	Обо знач ение
Алифати -ческие	H ₂ N-H ₂ C-COOH	Глицин	2-аминоэтановая кислота	Gly
3KULO 18	CH ₃ -CH(NH ₂)-COOH	Аланин	2-аминопропановая кислота	Ala
1. SKU.	(CH ₃) ₂ CH-CH-COOH NH ₂	Валин*	2-амино-3- метилбутановая кислота	Val
egn'ry	(CH ₃) ₂ CH-CH ₂ -CHCOOH NH ₂	Лейцин*	2-амино-4-ме- тилпентановая кислота	Ley
ekusiereg	CH ₃ CH ₂ CH(CH ₃)CHCOOH NH ₂	Изолей- цин*	2-амино-3-ме- тилпентановая кислота	Ile
Содер- жащие ОН-гр.	HO-CH ₂ -CH(NH ₂)-COOH	Серин	2-амино-3-гид- роксипропано- вая кислота	Ser
edn'n'	CH ₃ -CH(OH)-CHCOOH NH ₂	Треонин*	2-амино-3-гид- роксибутановая кислота	Thr
Содер- жащие СООН группу	HOOC-CH ₂ -CH-COOH NH ₂	Аспараги новая кислота	2-аминобутан- диовая кислота	Asp
711.KT 24	HOOCCH ₂ CH ₂ CHCOOH NH ₂	Глутамин овая кислота	2-аминопентан- диовая кислота	Glu
Содер- жащие NH ₂ CO	H ₂ N-CO-CH ₂ -CH-COOH NH ₂	Аспара- гин	gednik (1 sku	Asn

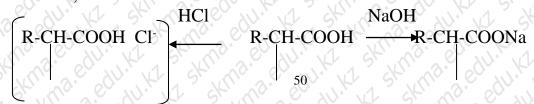
MEDISINA AKADEMIASY

MEDICAL **ACADEMY**

SKMA

«Оңтүстік Қазақстан медицина академиясы» АҚ АО «Южно-Казахстанская медицинская академия» Кафедра химических дисциплин, биологии и биохимии

46/11


Лекционный комплекс

группу	ch Us. 60 11. 15 ch	Wg. 600"	1.4.1 s. th. 33.	OQU.
ig gisqui	H ₂ NCOCH ₂ CH ₂ CHCOOH NH ₂	Глутамин	2-аминоамид- пентандиовая кислота	Gln
Содер. NH ₂ - группу	H ₂ NCH ₂ (CH ₂) ₃ CH-COOH NH ₂	Лизин*	2,6-диамино- гексановая кислота	Lys
11/1 SKI	H ₂ NCNH(CH ₂) ₃ CHCOOH NH NH ₂	Аргинин	1.K1 1. Skriva. edu	Arg
Содер- жащие серу	HS-CH ₂ -CH(NH ₂)-COOH	Цистеин	2-амино-3-мер- каптопропановая кислота	Cys
1 SKUS'S	CH ₃ SCH ₂ CH ₂ CH-COOH NH ₂	Метио- нин*	Kus er egn, Kr	Met
Арома- тичес- кие	C ₆ H ₅ CH ₂ CH(NH ₂)COOH	Фенила- ланин*	2-амино-3-бен- зилпропановая кислота	Phe
usisquik	HO-C ₆ H ₄ -CH ₂ -CH-COOH NH ₂	Тирозин	2-амино-3-(п- гидроксифенил- пропановая кислота	Tyr
Гетеро- цикличес кие	CH ₂ CH(NH ₂)COOH	Трипто- фан*	T zkug egn. g	Trp
ing edn'y	CH ₂ CH(NH ₂)COOH	гистидин	in the skill of th	His
SKULDING.	СООН	Пролин	ekusis squik	Pro

^{*-} незаменимые α-аминокислоты

Химические свойства

α-Аминокислота как амфотерное соединение образует соли и кислотами, и с основаниями:

 $-H_2O$ NH₃

Реакции образования пептидов

Пептидами называются соединения амидного характера, образованные в результате отщепления воды, от нескольких молекул а-аминокислот (конденсации), то есть они являются полиамидами аминокислот.

 $H_2NCH_2C_{-}OH + H_2NCHCOOH \longrightarrow H_2N-CH_2-C_{-}NH-CH-COOH$ -H₂O

ГЛИЦИН аланин глицил-аланин (дипептид)

При нагревании α-аминокислот можно получить амид, образуется из двух молекул аминокислот (дипептид).

Белки - BMC (полиамиды), построенные из а-аминокислот.

Пептиды делятся:

- 1) олигопептиды (низкомолекулярные пептиды) не более 10.
- 2) Полипептиды до 100 аминокислотных остатков.

Аминокислотная последовательность, то есть порядок чередования αаминокислотных остатков, составляет первичную структуру пептидов и белков.

презентации 4.Иллюстративный приведен в виде материал: мультимедиа, а также используются во время лекции использованием таблицы

5.Литература:

Основная:

- 1.Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016.
- 2.Дәуренбеков, Қ. Н. Органикалық химия. Т.2 : оқулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. -432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4.Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет,2024ж.
- 5.Зурабян, С. Э. Органическая химия: учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин; под ред. Н. А. Тюкавкиной. - М.: ГЭОТАР - Медиа, 2013. - 384 с.: ил
- 6.Зурабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p.
- 8.Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty: "Evero" 2015. - 180 p.
- 9.Органикалық химия: оқулық / Ә. Ф. Сейітжанов. Алматы: ЭСПИ, 2023. 416 б.
- 10.Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11.Органикалық химия. Т.2: окулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 388 бет.
- 12.Органикалық химия. Т.3: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 284 бет. Дополнительная:
- 1. Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б. 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторнопрактических занятий по органической химии. Учебно-методическое пособие. Шымкент, 2012,-164с

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

2Республиканская межвузовская электронная библиотека (РМЭБ) – http://rmebrk.kz/

3Цифровая библиотека «Aknurpress» - https://www.aknurpress.kz/

4Электронная библиотека «Эпиграф» - http://www.elib.kz/

5Эпиграф - портал мультимедийных учебников https://mbook.kz/ru/index/

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6 Контрольные вопросы:

- 1. Напишите схемы реакций солеобразования лейцина, изолейцина, лизина, треонина, валина, аспарагиновой кислоты с разбавленным раствором серной кислоты и с разбавленным раствором щелочи.
- 2. Напишите реакции декарбоксилирования и дезаминирования лизина, тирозина, триптофана, гистидина, глутаминовой кислоты.
- 3. Определите N-концевую аминокислоту в пептидах Лей-Ала-Фен, Сер-Гли-Тре, Гли-Ала-Мет методом деградации по Эдману.

Лекция №12

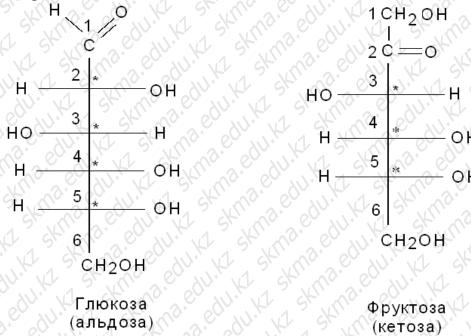
1.ТЕМА: Углеводы.

2.Цель: Сформировать знания стереохимического строения, таутомерных форм и важнейщих свойств моносахаридов как основу для понимания их метаболических превращений в организме, а также изучения структурной организации полисахаридов.

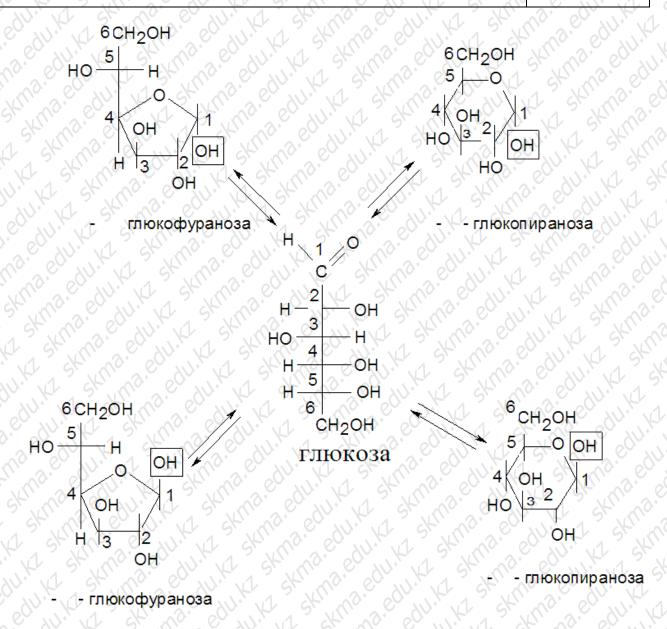
План:

- 1.Углеводы. Биологические свойства.
- 2. Моносахариды. Стереоизомерия.
- 3. D и L- стереохимические ряды.
- 4. Химические свойства моносахаридов.
- 5.Олиго и полисахариды. Строение. Номенклатура.
- 6. Химические свойства.

3.Тезисы лекций


Моносахариды

Классификация углеводов основна на томб что один подвергаются гидролизу, распадаясь на менее сложные, а другие — не распадаются под действием воды.


- 1) Простые углеводы (простые сахара). Их называют моносахариды или монозы.
- 2) Сложные углеводы (сложные сахара). Их называют полисахариды или полиозы. Они делятся на: сахароподобные сложные углеводы

(олигосахариды) и несахароподобные сложные углеводы (высшые полисахариды). Моносахариды являются полиоксиальдегидами (альдозы) и полиоксикетонами (кетозы).

Простые сахара классифицируют по числу атомов углерода в цепи: триозы, тетрозы, пентозы, гексозы.

Из атома углерода карбонильной группы (-CHO) возникает хиральный центр – атом углерода с которым связана полуацетальная гидроксильная группа.

Образовавшуюся полуацетельную гидроксильную группу называют **гликозидной.** В результате внутримолекулярного взаймодествия образуется термодинамически более учтойчивые циклы — фуранозы (пятичленные) или пиранозы (шестичленные).

В циклической форме возникает дополнительный центр хиральности – атом углерода, ранее входивший в состав карбонильной группы (C – 1), он называется аномерным, а две стереозомера – (спарава OH) - α , (слева – OH) - β - аномерами.

Глюкоза (углеводы) растворяясь в воде дает оптический активный раствор, удельное вращение которой со временем меняется. Это являние называется мутаротацией. Изменение во времени угла вращения плоскости

поляризации света растворами углеводов называется мутаротацией. Химическая сущность мутаротации состоит в способности моносахаридов к существованию в виде равновесной смеси таутомеров - открытой и циклических форм. Такой вид таутомерии называется оксотаутомерией.

Взаимопревращение α и β - аномеров друг друга промежуточную оксоформу называется аномернизацией.

Сложные углевод, или полисахариды (полиозы) – это углеводы, которые могут гидролизоваться с образованием простых углеводов (уже не поддающихся гидролизу).

Сложные углеводы делает на две подгруппы:

- 1) Сахароподобные сложные углеводы или олигосахариды схожи с простыми углеводами, легко растворяются в воде, обладают сладким вкусом. При гидролизе образуются несколько молекул простого сахара.
- 2) Несахароподобные сложные углеводы или высшие полисахариды не похожи на простые сахара, не дают истинных раствороа, либо совсем не растворимы в воде (клечатка – образующая стенки растительных клеток), или же ратсворяются с образованием коллоидных ратсворов (крахмал и гликоген – животных крахмал). Не обладают сладким вкусом (без вкусны.). при гидролизе образуются большое число молекул моносахаридов.

Дисахариды - это такие сложные сахара, каждая молекула которых, при гидролизе распадается на две молекулы моносахарида.

К невосстанавливающим дисахаридам относится – мальтоза, лактоза Они обладают восстанавливающими свойствами обнаруживают явление мутаротации, так как в них вследствие оксо – цикло таутомерии возможен взаимный переход открытой и циклической форм одного из моносахаридов.

Мальтоза или солодковый сахар (α - Д – глюкопиранозил – 1,4 - α - Д глюкопираноза). $C_{12}H_{22}O_{11} + H_2O \rightarrow 2C_6H_{12}O_6$

> мальтоза глюкоза

Мальтоза – основной продукт расщепления крахмла под действием фермента β - амлазы, выделяемого слюнной железой. Имеет в 3 раза менее сладкий вкус, чем сахароза.

В мальтозе остатки двух молекул Д – глюкопиранозысвязаны

(1-4) гликозидной связью. В мальтозе есть свободный полуацетальный гидроксид. Мальтоза восстанавливает реактив Фелинга, растворы мутаротируют.

Лактоза (β - Д – галактопиранозил – 1,4 - β - Д – глюкопираноза) (молочный сахар)

$$C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$$

Лекционный комплекс

Лактоза галактоза глюкоа

В молекуле лактозы имеется свободный полуацетальный гидроксил. Этот гидроксил принадлежит остатку глюкозы, а кислородный мостик, связывающий два остатка моносахарида в молекуле лактозы, соединяет первый атом углерода остатка глюкозы. Таким образом, лактоза является гликозидом галактозы, то есть галактозидом.

4.Иллюстративный материал: приведен виде презентации использованием мультимедиа, а также используются во время лекции таблицы

5.Литература:

Основная:

1. Зурабян, С. Э. Органическая химия [Текст]: учеб. для мед. вузов/С. Э. Зурабян, А. П. Лузин; под ред. Н. А. Тюкавкиной. - М.: ГЭОТАР - Медиа, 2013. - 384 c.

Электронные учебники:

2. Патсаев А.К.Биополимеры/Патсаев А.К.2020-405с

Лекшия №13

Гетероциклические соединения

Цель: Сформировать знания реакции электрофильного замещения в ароматическом ряду как основу для прогнозирования реакционной способности гетероциклов и сравнивать реакционную способность гетероциклов взаимосвязи пятичленных ароматичности.

План

Гетероциклические соединения. Строение, Классификация. Механизм реакций.

Тезисы лекций

Гетероциклические соединения – это вещества, молекулы которых циклические и содержат в цикле кроме углеродных атомов один или два неуглеродных атома – гетероатом.

Важнейшими пятичленными гетероциклами с одним гетероатомом фуран (или фурфуран), содержащий кислород, тиофен - содержащий серу, пиррол – содержащий азот.

фуран

тиофен

пиррол

Пятичленные гетероциклы (фуран, тиофен, пиррол) галогенируются, сульфируются и нитруются так же, как и другие ароматические соединения. Они более реакционноспособны, чем бензол, так как являются π -избыточными системами. Поэтому для S_E в ряду гетероциклов часто не требуются сильные катализаторы, как для замещения в бензоле.

Пиррол и фуран осмоляются в присутствии протонных кислот, то есть проявляют ацидофобность боящиеся кислот.

А.П.Терентьев нашел способ сульфирования фурана и подобных ему соединений, действуя на него продуктом присоединения серного ангидрида к пиридину – пиридинсульфотриоксидом $C_5H_5NSO_3$.

$$C_5H_5NSO_3$$

$$-SO_3H (C_5H_5N)$$

Нитрование ацидофобных соединений проводят в присутствии непротонсодержащих соединений (CH₃-COONO₂ - ацетилнитрат).

Производые фурана: фурфурол, фурациллин, бензофуран или кумарон.

СНО
$$O_2N$$
—С=N-NH-CO-NH $_2$ бензофуран (α -фуранкарбальдегид) (5-нитро-2-фурфурилиден семикарбазон)

Пиррол, как и амины обладают основными свойствами. Обладая слабо выраженными основными свойствами, пиррол одновременно имеет слабокислый характер: атом водорода в иминогруппе пиррола (-NH) под влиянием металлического калия или крепкого раствора калия гидроксида замещается калием с образованием твердого пиррол-калия.

Различия стойкости к кислотам, степень легкости S_E , физические свойства, степень ароматичности:

Тиофен > пиррол > фуран

Тиофен – легче чем бензол хлорируется, сульфируется и нитруется в αположении. Не относится к ацидофобным, он близок по стабильности к бензолу (вклад пары электронов у него больше в ароматическии секстет, так как у атома серы поляризуемость выше, чем у кислорода и азота).

$$H_2SO_4$$
 SO_3H тиофен α -сульфотиофен

Азолы - это пятичленные гетероциклы, у которых оба или хотя бы один гетероатом является атомами азота.

Пиразол и имидазол способны ко всем главным типам ароматических электрофильных замещении - галогенированию, сульфированию, нитрованию (в положении 4, или тоже самое 5).

Кислотно-основные свойства

В ряду азолов пиразол и имидазол, кроме основных свойств, проявляют слабокислые свойства, за счет атома водорода NH-группы. Эти соединения амфотерны, так как они образуют соли как с кислотами, так и щелочами.

Азины: пиридин, хинолин, изохинолин, акридин.

SKMA

Кафедра химических дисциплин, биологии и биохимии

46/11

Лекционный комплекс

изохинолин

акридин

Пиридин обладает основными свойствами, так как содержит атом азота, в известной степени анологичной азоту аминов. Водные растворы пиридина окрашивают лакмус в синий цвет, так как пиридин, подобно аминам, образует с водой соединение, анологичное гидроокиси аммония [+NH4]OH:

4.Иллюстративный материал: приведен в виде презентации с использованием мультимедиа, а также используются во время лекции таблицы

5.Литература:

Основная:

- 1.Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016. 500 бет с
- 2.Дэуренбеков, Қ. Н. Органикалық химия. Т.2 : оқулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. 432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4. Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет, 2024ж.
- 5.Зурабян, С. Э. Органическая химия : учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин ; под ред. Н. А. Тюкавкиной. М. : ГЭОТАР Медиа, 2013. 384 с. : ил
- 6.Зурабян С.Э. Органическая химия . Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p.
- 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty : "Evero" 2015. 180 p.
- 9.Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10.Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11. Органикалық химия. Т.2 : оқулық / Қ.Н. Дәуренбеков. Алматы : New book, 2022. - 388 бет.
- 12.Органикалық химия. Т.3: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 284 бет.

Дополнительная:

1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б.

2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторно-практических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genres

- 2Республиканская межвузовская электронная библиотека (РМЭБ) http://rmebrk.kz/
- 3Цифровая библиотека «Aknurpress» https://www.aknurpress.kz/
- 4Электронная библиотека «Эпиграф» http://www.elib.kz/
- 5Эпиграф портал мультимедийных учебников https://mbook.kz/ru/index/

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6. Контрольные вопросы:

- 1. Назовите структурные особенности обусловленным ароматическим характером фурана, пиррола и тиофена
- 2. Ацидофобность. Назовите гетороциклы показывающие ацидофобность. Напишите схемы реакций нитрования и сульфирования фурана и индола
- 3. Напишите схемы реакций фурфурола со следующими реагентами:
- a) NaHSO₃: б)гидразином.

Назовите реакций доказывающие наличие альдегидной группы в молекуле фурфурола

- 4. Объясните, какое влияние на химические свойства оказывает атом азота «пиридинового» типа в молекуле пиразола и имидазола в сравнении с пирролом.
- 5. Напишите таутомерные формы пиразолона-5. назовите лекарственные препараты состоящие из структуры пиразолона-5.
- 6. Отметьте сходство и различие в строении и свойствах пиридина и бензола. Приведите примеры реакций.

Лекция №14

1.ТЕМА: Нуклеиновые кислоты

2.Цель: Сформировать знания строения и химических свойств нуклеиновых кислот.

План

Нуклеозиды. Нуклеотиды. Нуклеиновые кислоты

3. Тезисы лекции:

Название нуклеиновых кислот от латинского слова «nucleus» (ядро), обнаружены в клеточных ядрах.

Нуклеиновые кислоты, содержащие в молекулах остатки рибозы, называются рибонуклеиновыми кислотами (РНК), а содержащие остатки дезоксирибозы – дезоксирибонуклеино-выми кислотами (ДНК).

Состав нуклеиновых кислот (ДНК и РНК)

Нуклеи- новые	Caxap	SKINO	Неорга- ничес-				
кислоты	J. SKULUS S. SGITTING SE SKULUS SE GITTING SE						
ДНК	Дезокси -рибоза	Аденин	Гуанин	Цитозин	Тимин	H ₃ PO ₄	

			лекционный комплекс									. (1)			
n_{ij}		0	$\forall O$,	V	SI	"UO.	- 60	ADI		CK,	~	60	111	,	
1	- '/\						(A+	- ()				A 4	NV		

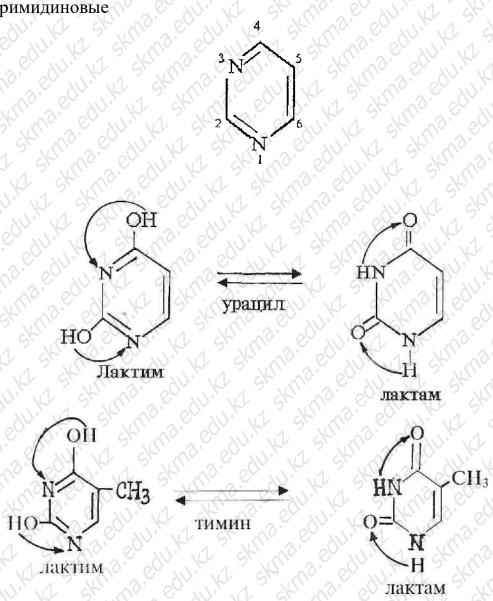
Цитозин

Урацил

Гуанин

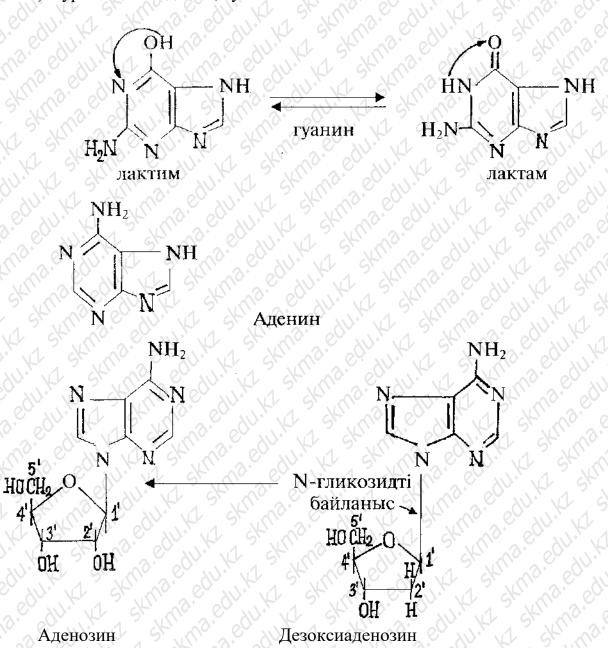
В нуклеиновых кислотах каждое гетероциклическое основание связано атомом углерода в положении 1 молекулы соответствующего caxapa. Этот блок-сахар-основание называется нуклеозидом. Или нуклеозидом называется N-гликозид, агликон которого представляет собой производное пиримидина или пурина.

Название нуклеозидов определяется их агликонами, наименования пиридина имеют окончания «идин», а производные пурина «озин».


Гетероциклические амины называют – основаниями. Различают нуклеиновые основания двух типов:

пиримидиновые

Рибоза


Аденин

РНК

2) Пуриновые – аденин, гуанин.

SKMA

46/11

Лекционный комплекс

«Оңтүстік Қазақстан медицина академиясы» АҚ

Дезоксицитидин

Тимидин

Уридин

4.Иллюстративный материал приведены в виде презентации в мултьимедии, а также используются во время лекции таблицы.

5. Литература:

2013. - 384 c.

Основная: 1.Зурабян, С. Э. Органическая химия [Текст]: учеб. для мед.вузов/ С. Э. Зурабян, А. П. Лузин; под ред. Н. А. Тюкавкиной. - М.: ГЭОТАР - Медиа,

Электронные учебники:

2. Патсаев А.К.Биополимеры/Патсаев А.К.2020-405с

6.Контрольные вопросы:

- 1. Нуклеиновые кислоты.
- 2.Виды нуклеиновых кислот
- 3. Биологическое значение РНК и ДНК

Лекция №15

- 1.ТЕМА: Липиды. Неомыляемые липиды и омыляемые липиды.
- 2.Цель: Сформировать знания строения и химических свойств омыляемых и неомыляемых липидов.

План

Липиды. Неомыляемые липиды

Липиды. Омыляемые липиды.

3.Тезисы лекции:

Липиды - разнородная группа веществ, содержащихся в животных и растительных тканях, не растворимых в воде и растворимых в малополярных растворителях.

Некоторые из соединений липидной смеси гидролизуются водным раствором щелочи. Этот процесс называют *омылением*. Такие липиды называют омыляемыми.

Терпены и стероиды построены из одинаковых изопреновых пятиуглеродных фрагментов.

Соединения, построенные их фрагментов изопрена - изопреноиды.

Терпены - группа углеводородов, имеющих общую формулу $(C_5H_8)_{2+\Pi}$, где $\pi=0$ до 8.

Все эти соединения построены по изопреновому правилу.

Производные терпенов (кислородсодержащие) называются *терпеноиды* (спирты, карбонильные соединения и т.д.)

Производные мирцена - спирты *гераниол* и *нерол*. Они являются изомерами. Применяют как душистые вещества в парфюмерной промышленности.

Моно циклические терпены содержат в молекуле один цикл. Представители: лимонен, ментол, терпин.

Лимонен имеет асимметрический атом углерода, а поэтому существует в виде Д и Ь-изомеров, а также в виде рацемата.

При восстановлении оптически активного лимонена или дипентена получается ментан, а при полной их гидратации в кислой среде, протекающей в соответствии с правилом Марковникова, образуется двухатомный спирт — *терпин*

Терпин применяется как отхаркивающее средство при

хроническом бронхите в виде гидрата.

Камфора - очень ценный медицинский препарат, часто применяемый, для улучшения сердечной деятельности.

Камфора не имеет двойных связей и поэтому не присоединяет галогенов. В ней содержится кетонная группа. Она образует оксимы, семикарбазоны, фенилгидразоны, дает другие реакции на кетонную группу.

Стероиды широко распространены в природе и играют важную роль в жизнедеятельности животных и растений. Их применяют в качестве лекарственных препаратов.

В зависимости от их нахождения в природе и химического стероиды подразделяются на следующие соединений: стерины, желчные кислоты, стероидные гормоны, стероидные сапонины, сердечные гликозиды и стероидные алкалоиды.

Ганглиозиды - богатые углеводами сложные липиды, впервые выделенные из серого вещества мозга. В структурном отношении ганглиозиды сходны с цереброзидами, отличаясь тем, что вместо моносахарида они содержат сложный олигосахарид.

4.Иллюстративный материал приведены в презентации мултьимедии, а также используются во время лекции таблицы.

5.Литература:

Основная:

- 1. Дәуренбеков, Қ. Н. Органикалық химия. Т.1 : оқулық / Қ.Н. Дәуренбеков. Шымкент : Әлем, 2016.
- 2. Дәуренбеков, Қ. Н. Органикалық химия. Т.2 : оқулық / Қ. Н. Дәуренбеков. Шымкент : Әлем, 2016. -432 бет. с.
- 3.Патсаев Ә.Қ. Органикалық химия: оқулық –Алматы: Эверо, 2015-616 бет.
- 4.Дауренбеков Қ. Н., Алиханова Х.Б., Катчанова А.Б.Органикалық химия, оқу құралы, Шымкент, «Әлем» баспаханасы, 340 бет,2024ж.
- 5.Зурабян, С. Э. Органическая химия: учеб. для мед.вузов/ С. Э. Зурабян, А. П. Луизин; под ред. Н. А. Тюкавкиной. - М.: ГЭОТАР - Медиа, 2013. - 384 с.: ил
- 6.Зурабян С.Э. Органическая химия. Учебник. М: ГЕОТАР-Медиа, 2014
- 7. Azimbayeva, G. T. Organic chemistry: textbook / G. T. Azimbayeva. Almaty: [s. n.], 2016. 313 p.
- 8. Tukibayeva, A. Chemistry of functional derivatives of organic molecules [: study book. Almaty: "Evero" 2015. - 180 p.
- 9.Органикалық химия : оқулық / Ә. Ф. Сейітжанов. Алматы : ЭСПИ, 2023. 416 б.
- 10. Органикалық химия. Т.1: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 320 бет. с.
- 11.Органикалық химия. Т.2: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 388 бет.
- 12.Органикалық химия. Т.3: оқулық / Қ.Н. Дәуренбеков. Алматы: New book, 2022. 284 бет. Дополнительная:
- 1.Патсаев Ә.Қ., Алиханова Х.Б., Ахметова А.Ә. Органикалық химия пәнінен зертханалық-тәжірибелік сабақтарына арналған оқу-әдістемелік құралы, Оқу –әдістемелік құралы. Шымкент, 2012ж., -168 б.
- 2.Патсаев А.К, Алиханова Х.Б., Ахметова А.А, Учебно-методическое пособие для лабораторнопрактических занятий по органической химии . Учебно-методическое пособие. Шымкент, 2012,-164с.

Электронные ресурсы ЮКМА

1Электронная библиотека ЮКМА - https://e-lib.skma.edu.kz/genre

2Республиканская межвузовская электронная библиотека (РМЭБ) — http://rmebrk.kz/ 3Цифровая библиотека «Aknurpress» - https://www.aknurpress.kz/

4Электронная библиотека «Эпиграф» - http://www.elib.kz/

5Эпиграф - портал мультимедийных учебников https://mbook.kz/ru/index/

696C IPR SMART https://www.iprbookshop.ru/auth

7информационно-правовая система «Заң» - https://zan.kz/ru

8Medline Ultimate EBSCO

9eBook Medical Collection EBSCO

10Scopus - https://www.scopus.com/

6.Контрольные вопросы:

- 1 .Напишите схему полного гидрирования треолеина.
- 1. Приведите структурные формулы моно-, и бициклических терпенов. Напишите схему реакции окисления ментола.
- 2. Отметьте ассимитрические атомы углерода в формулах лимонена, пинена и камфоры. Сколько оптических изомеров имеет камфора?
- 3. Напишите схемы качественных реакций иллюстрирующих непредельные свойства лимонена.

Лекционный комплекс подготовили:

Дауренбеков К.Н. к.х.н., и.о.профессора Алиханова Х.Б. - к.х.н., и.о.профессора